DOI QR코드

DOI QR Code

Influence of Arbuscular Mycorrhizal Fungus and Kinetin on the Response of Mungbean Plants to Irrigation by Seawater

  • Rabie, G.H. (Botany Department, Faculty of Science, Zagazig University)
  • Published : 2004.06.30

Abstract

An experiment was carried out to investigate the effects of pre-inoculation with the mycorrhizal fungus Glomus clarum and foliar application of kinetin on the growth of mungbean plant irrigated wht different dilution of seawater. Arbuscular-mycorrhizal(AM) infection significantly increased dry weight, height, chlorophyll, sugar and protein content, nitrogen and phosphorus-use efficiencies, leaf conductivity, transpiration rate, nitrogenase, acid and alkaline phosphates activities of all salinized mungbean plants in comparison with control and non-mycorrhizal plants irrespective of the presence or absence of kinetin. Mycorrrhizal plants showed higher concentrations of N, P, K, Ca and Mg and lower Na/N, Na/P, Na/K, Na/Ca and Na/Mg ratios than non-mycorrhizal plants when irrigated with certain dilution of seawater. Mungbean plants showed 597% and 770% dependency on AM fungus G. clarum in absence and presence of kinetin, respectively, for biomass production under a level of 30% of seawater. The average value of tolerance index for mycorrhizal plants accounted 267% and 364% in absence and presence kinetin respectively. This study provides evidence for the benefits of kinetin which are actually known for mycorrhizal than non-mycorrhzal plants. AM fungus and kinetin protected the host plants against the detrimental effects of salt. However, mycorrhizal infection was much more effective than kinetin applications. Thus management applications of this arbuscular mycorrhizal endophyte(G. clarum) with kinetin could be of importance in using seawater in certain dilution for irrigation in agriculture.

Keywords

References

  1. Abd-El-Fattah, G. M. and Rabie, G. H. 1995. Improved growth and tolerance of cowpea to irrigation with waste effluents from fertilizer's factories using mycorrhizal fungus (Glomus fasciculate) Zagazig. J. Pharm. Sci. 4(2): 87-97
  2. Abdel-Fattah, G. M., Fatma, F. M. and Ibrahim, A. N. 2002. Interactive effects of endomycorrhizal fungus (Glomus estunikatum) and phosphorus fertilization on growth and metabolic activities of broad bean plant under drought stress conditions. Pakistan Journal of Biological Sciences 5(8): 835-841 https://doi.org/10.3923/pjbs.2002.835.841
  3. Adiku, G., Renger, M., Wessolek, G., Facklam, M. and HechBucholtz, C. 2001. Stimulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agricultural Water Management 47(1): 55-68 https://doi.org/10.1016/S0378-3774(00)00094-9
  4. AI-Karaki, G. M. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10: 51-54 https://doi.org/10.1007/s005720000055
  5. Allen, S. F, Grimshaw, H. E and Rowl, A. B. 1984. Chemical analysis. In methods in platn ecology (Eds. P. D. Moor and S. B. Chapman) Pp. 185-344, Blackwell Oxford
  6. Auge, M. and Stodola, W. 1990. Apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rose plants. New Phytologist 115: 285-295 https://doi.org/10.1111/j.1469-8137.1990.tb00454.x
  7. Auge, R., Stodola, A., Ebel, R. and Duan, X. 1995. Leaf elongation and water relation of mycorrhizal sorghum in response to partial soil drying: tow Glomus species at varying phosphorus fertilization. J. Exp. Bot. 46: 297-307 https://doi.org/10.1093/jxb/46.3.297
  8. Auge, R., Stodola, A., Ebel, R. and Duan, X. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-4 https://doi.org/10.1007/s005720100097
  9. Ayars, J. E. and Tanji, K. K. 1999. Effect of drainage on water quality in arid and semi-arid Lands In: Skaggs, R. W., van Schilfgaard, J. (Eds.), Agricultural Drainage. ASA-CssA-SSA, Madison, WI, USA, 831-867
  10. Beardsel, F, Jarvis, G. and Davidson, B. 1972. A null balance diffusion porometer suitable for use with leaves of many shapes. J. Appl. Ecol. 23: 677-68
  11. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  12. Chopra, J., Narinder, K. and Gupta, K. 1998. Carbhydrate status and sucrose metabolism in young bean roots and nodules. Phytochemistry 49(7): 1891-1895 https://doi.org/10.1016/S0031-9422(98)00375-6
  13. Copeman, R., Martin, C. and Stuta, J. 1996. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. Hortscience 31: 341-344
  14. Cuartero, J. and Fernandez-Munos, R. 1999. Tomato and salinity. Scientia Horticulturae 78: 83-125 https://doi.org/10.1016/S0304-4238(98)00191-5
  15. Dasgan, H., Hakan, A., Kazim, A. and Ismail, C. 2002. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Science 163(4): 695-703 https://doi.org/10.1016/S0168-9452(02)00091-2
  16. Davies, F, Olalde, V., Gomez, M., Alvarado, M., Cerrato, R. and Boutton, T. 2000. Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. Cv. San Luis) with arbuscular mycorrhia indigenous to Mexico, Ssientia. Horticulturae 92: 347-359
  17. Diallo, A., Samb, P. and Macauley, H. 2001. Water status and stomatal behaviour of cowpea, Vigna unguiculata (L) walp, plants inoculated with two Glomus species at low soil moisture levels. Eur. J. Soil Biol. 37: 187-196 https://doi.org/10.1016/S1164-5563(01)01081-0
  18. Fooland, M. 1996. Genetic analysis of salt tolerance during vegetative growth in tomato, Lycopersicon exculentum M. Plant Breeding 115: 245-250 https://doi.org/10.1111/j.1439-0523.1996.tb00911.x
  19. Gerdemann, D. W. 1975. Vesicular arbuscular mycorrhizal. Pp. 575-591. In D. G. Torrey and D. T. C. Clarkson, Eds. The development and Function of roots. Academic press, London
  20. Gianinazzi-Pearson, V. and Gianinazzi, S. 1976. Enzymatic studies on the metabolism on Vesicular-mycorrhiza. 1. Effect of mycorrhiza formation and phosphorus nutrition on soluble phosphatase activities in onion roots. Physiol. Veg. 14: 833-841
  21. Harbome, B. 1984. Photochemical methods. A guide to modem techniques of platn analysis. Chapman & Hall press London
  22. Hardy, F, Bums, C. and Holston, D. 1973. Application of the acetylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5: 47-810 https://doi.org/10.1016/0038-0717(73)90093-X
  23. Heijden, M., Klironomos, J., Vrsic, M., Moutoglis, P., Streitwolf-Engd, R., Boller, T., Wiemken, A and Sanders, I. 1988. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72 https://doi.org/10.1038/23932
  24. Hicks, C. R. 1983. Fundamental concepts in the design of experimental. CBS college publishing. New York
  25. Hoorn, W., Katerji, N., Hamady, A and Mastroilli, M., 2002. Effect of salinity on yield and nitrogen uptake of four-grain legumes and on biological nitrogen contribution from the soil. Agricultural Water Management 51: 87-98 https://doi.org/10.1016/S0378-3774(01)00114-7
  26. Jackson, M. L. 1967. Soil chemical analysis. Prentice Hall of India Ltd., New Delhi, India
  27. Jackson, N. F, Miller, R. H. and Forkiln, R. E. 1973. The influence of VAM on uptake of 90 sr. from soil by soybeans. Soil Bioi. Biochem. 5: 205-212 https://doi.org/10.1016/0038-0717(73)90003-5
  28. Jalaluddin, M. 1993. Effect of VAM fungus (Glomus intraradices) on the growth of sorghum, maize, cotton & pennisetum under salt stress. Pak. J. Bot.
  29. Jarstfer, A. G., Farmer-Koppenol, P. and Sylvia, D. M. 1998. Tissue magnesium & calcium affect arbuscular mycorrhizal development & fungal reproduction. Mycorrhiza 7: 237-242 https://doi.org/10.1007/s005720050186
  30. Katerji, N., Hoom, J., Hamady, A. and Mastroilli, M. 1998. Response of tomatoes, a crop of indeterminate growth, to soil salinity. Agricultural Water Management 38(1): 59-68 https://doi.org/10.1016/S0378-3774(98)00051-1
  31. Khan, M. and Rizvi, Y. 1994. Effect of salinity temperature, and growth regulation on the germination and early seedling growth regulators on the germination and early seedling growth of Atriplix griffithi Var stocksii. Can. J. Bot. 72: 475-479 https://doi.org/10.1139/b94-063
  32. Khan, M. and Ungar, I. 1997. Alleviation of seed dormancy in the desert forb Zygophyllum simplex L. Pakistan Annals of Botany 80: 397-400
  33. Khan, M., Ungar, I. and Showalter, A. 2000. The effects of salinity on the growth, water statues, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J. Arid Environments 45: 73-84 https://doi.org/10.1006/jare.1999.0617
  34. Khan, M., Ungar, I. and Showalter, A. 2000. Effects of salinity on growth water relation & ion accumulation of the subtropical perennial halophyte, Atriplex griffithii Var. stocksii. Annals of Botany 85: 225-232 https://doi.org/10.1006/anbo.1999.1022
  35. Kothari, S., Marschner, H. and Romheld, V. 1990. Direct & indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (zea mays L) in a calcareous soil. New Phytol. 116: 637-645 https://doi.org/10.1111/j.1469-8137.1990.tb00549.x
  36. Marschner, H. 1995. Saline soil. In: Mineral nutrition of higher plants, Academic press, New York, 567-680
  37. Masarrat, M. 2002. Effect of salinity shock on some desert species native to the northern part of Egypt. J. Arid Environment, 1-13
  38. Mathur, N. and Vyas, A. 1999. Improved biomass production, nutrient uptake & establishment of in vitro raised ziziphus mauritianas by VA mycorrhizal. J. Plant Physiol. 155: 129-123
  39. Merguihae, A. E., Burity, H. A, Tabosa, J. N. and Maia, F. L. 2002. Salt stress response and proline accumulation in Brachiaria humidicola. Revista Argentina de Microbiologia, Argentina, A. 34(2): 77-82
  40. Muhsin, T. and Zwiazek, J. 2002. Colonization with Hebeloma crustuli niforme increase water conductance & limits shoot sodium uptakes in white spruce (Picea glauca) seedling. Plant Soil 238(2): 217-225 https://doi.org/10.1023/A:1014435407735
  41. Naguib, M. I. 1963. Colorimetric estimation of plant polysaccharides. Zuker 16: 15-18
  42. Nemat-Alla, M., Younis, M., El-Shihaby, O. and El-Bastawisy, Z. 2002. Kinetin regulation of growth and secondary metabolism in water logging & salinity treated Vigna sinensis and zea mays. Acta Physiological Plantarum 24(1)
  43. Nielsen, S., Thingsrtrup, I. and Wigand, C. 1999. Apparent lack of vesicular-arbuscular mycorrizal (VAM) in the sea grasses Zostera marina L. and Thalassia testudinum Banksex Konig. Aquatic Bot. 63: 261-266
  44. Phillips, J. M. and Hayman, D. S. 1970. Improved procedures for clearing roots & staining parasitic and vesicular arbuscular mycorrhizal fungi for apid assessment of infection. Trans. Brit. Mycol. Soc. 55: 158-161 https://doi.org/10.1016/S0007-1536(70)80110-3
  45. Pimentel, D., Bailey, O., Kim, P., Mullanecy, E., Calabreses, J., Walman, L., Nelson, F. and Yao, X. 1999. Will limits of the earth's resources control human number? Environ sustainability Develop, I, pp. 19-39
  46. Postal, S. 1997. Last Oasis: water scarcity. W. W. Norton and CO; New York
  47. Pyler, D.-B. and Proseus, T. E. 1996. A comparison of the seed dormancy characteristics of Spartina patens and Sparaitina alternijlora (poaceae). Amer. J. Bot. 83: 11-14 https://doi.org/10.2307/2445948
  48. Qadir, M., Ghafoor, A and Murthaza, G. 2001. Use of salinesodic waters through phytoremediation of calcareous saline sodic soils. Agricultural Water Management 50(3) 197-210
  49. Rao, A. V. and Tak, R. 2002. Growth of different tree species and their nutrient uptak in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India and zone. J. Arid Environments 51: 113-119 https://doi.org/10.1006/jare.2001.0930
  50. Rilling, M. and Steinberg, P. 2002. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol. Biochem. 34(9): 1371-1374
  51. Ruiz-Lozano, M. and Azcon, R. 2000. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10: 137-143
  52. Sawan, Z., Mohamed, A, Sakr, R. and Tarrad, A. 2000. Effects of kinetin concentration & methods of application on seed germination yield components, Yield & fiber properties of the Egyptian, cotton (Gossypium barbadense). Environ. Exp. Bot. 44: 59-68 https://doi.org/10.1016/S0098-8472(00)00054-X
  53. Shannon, M. C. and Grieve, C. M. 1999. Tolerance of vegetable crops to salinity. Scientia Horticulturae 78: 35-38
  54. Shetty, G., Hetrick, D. and Schwat, P. 1995. Effects of mycorrhizal fertilizers amendments on zinc tolerance of plants. Environ. Pollution 88(3): 308-314
  55. Smith, S. and Read, D. 1997. Mycorrhizal symbiosis. Academic press, London, pp. 453-469
  56. Steel, R. G. D. and Torti, J. H. 1960. Principles and procedures of statistics. New York: MC Craw Hill
  57. Tain, C., He, X. Z. and Chen, J. 2002. Effects of VA mycorrhizal & Frankia dual inoculation on growth & nitrogen fixation on of Hippophae tibetana, Forst Ecology & Management 170: 307-312
  58. Trouvelot, A., Kough, J. and Gianinazzi Pearson, V. 1986. Evaluation AVA infection levels in root systems. Research for estimation methods having a functional significance; In: V. Gianinazzi-pearson and S. Gianinazzi (eds.), physiological & Genetical Aspects of mycorrhizal INRA press, Paris, France, 217-221
  59. Ungar, I. A. 1991. Ecophysiology of vascular halophytes. Baton Roug: CRC press
  60. Yano-Melo, A., Saggin, O. and Maia, L. 2002. Tolerance of mycorrhizal banana (Musa sp. Cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystems & Environment 1967: 1-6