Hydrogen Production by Purple Sulfur Bacteria, Thiocapsa roseopersicina in Photoheterotrophic Culture Condition

홍색유황세균, Thiocapsa roseopersicina의 photoheterotrophic 조건에서의 수소생산

  • Kim, Mi-Sun (Biomass Research Center, Korea Institute of Energy Research) ;
  • In, Sun-Kyoung (Biomass Research Center, Korea Institute of Energy Research) ;
  • Baek, Jin-Sook (Biomass Research Center, Korea Institute of Energy Research) ;
  • Lee, Jeong-K. (Department of Life Science, Sogang University)
  • 김미선 (한국에너지기술연구원, 바이오매스 연구센터) ;
  • 인선경 (한국에너지기술연구원, 바이오매스 연구센터) ;
  • 백진숙 (한국에너지기술연구원, 바이오매스 연구센터) ;
  • 이정국 (서강대학교 생명과학부)
  • Published : 2005.12.30

Abstract

The purple sulfur phototrophic bacterium, Thiocapsa roseopersicina NCIB 8347 has been studied on hydrogen production and cell growth under different culture conditions, such as light source, light intensity, and growth temperature. T. roseopersicina showed maximum cell growth of 1.38 and 1.42 g-DCW/L under 7.5-10 klux of halogen and fluorescent light, respectively, and produced maximum amount of hydrogen with values of 0.90 and 0.48 $mL-H_2/mg$-DCW under the irradiation of 10 klux of halogen and fluorescent light, respectively. The optimum growth temperature for hydrogen production was $26^{\circ}C$, and hydrogen production rate was lowered over $30^{\circ}C$. When T. roseopersicina was grown photoheterotrophically under irradiation of 8-9 klux of halogen lamp, the generation time was 4.2 hr. The strains started producing hydrgen from the middle of the logarithmic growth phase and continued until succinate concentration leveled out.

홍색유황세균, Thiocapsa roseopersicina가 광합성 종속영양상태에서 수소를 생산하기 위한 여러 가지 인자 중에서 광원, 광세기, 배양온도의 영향을 실험하였다. 또한 균체의 성장곡선과 아울러 수소 생산과 소비에 영향을 주는 효소 역가의 변화를 측정하였다. 할로겐등과 형광등을 사용하여 균체성장과 수소생산을 관찰한 결과 배양 48시간 만에 균체성장은 할로겐등과 형광등을 $7.5{\sim}10$ klux로 조사할 때 각각 1.38 및 1.41 g-DCW/L로 가장 높은 균체 성장을 보였고, 수소생산성은 할로겐등과 형광등 10 klux일 때 각각 0.90 및 0.48 $ml-H_2/mg$-dcw를 보여 할로겐등 10 klux일 때 가장 높은 수소생산성을 보였다. 최적 수소생산 온도는 $26^{\circ}C$이었고, $30^{\circ}C$ 이상에서는 수소생산이 감소하였다. $30^{\circ}C$에서 할로겐 램프로 $8{\sim}9$ klux를 조사하면서 photoheterotrophic 조건으로 배양할 때 T. roseopersicina NCIB 8347 세대시간은 약 4.2시간이었다. 수소는 성장대수기 중간인 18시간부터 발생하여 succinate가 모두 소비되는 45시간까지 발생하였고, 그 이후는 더 이상 생산되지 않았다. 그러나 배양시간이 연장되면서 발생한 수소는 시간이 경과함에 따라 감소하였다. 또한 본 배양 조건에서 발생한 수소생산은 nitrogenase에 의한 것으로 사료되었다.

Keywords

References

  1. Kovacs, K. L., B. Fodor, A. T. Kovacs, G. Csanadi, G. Maroti, J. Balogh, S. Arvani, and G. Rakhely (2002), Hydrogenase, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in Thiocapsa roseopersicina, Int. J. Hydrogen Energy 27, 1463-1469 https://doi.org/10.1016/S0360-3199(02)00097-6
  2. Bryant, F. O. and M. W. Adams (1989), Characterization of hydrogenase from the hyperthennophilic Archaebacterium, Pyrococcus Furiosus, J. BioI. Chem. 264, 5070-5079
  3. Cammack, R., V. M. Fernandez, and E. C. Hatchikian (1994), Nickel-Iron hydrogenase, Methods in Enzymology 243, 43-69 https://doi.org/10.1016/0076-6879(94)43007-1
  4. Szyper J. P., B. A. Toza, J. R. Benemann, M. R. Tredici, and O. R. Zaborsky (1998), Internal gas exchange photobioreactor. In BioHydrogen. Zaborsky OR, Ed. p. 441-446. New York and London: Plenum Press
  5. Kim, M. S. (2002), Integrated system for biological hydrogen production from organic wastes and waste-waters. International Symposium on Hydrogen and Methane Fermentation of Organic Waste. Japan Science and Technology Corporation 2002. p. 11-18
  6. Tramm-Werner, S., M. Hackethal, M. Weng, and W. Hartmeler (1996), Photobiological hydrogen production using a new plate loop reactor. Hydrogen energy progress. Proc. 11th World Hydrogen Energy Conference. Stuttgart. Germany. 1996; 3: pp2407-24 15
  7. Modigell, M. and N. Holle (1998), New Photobioreactor for application of biological hydrogen production, Hydrogen Energy Progress, Proc. 12th World Hydrogen Energy conference. 1998. pp2045-2055
  8. Pfennig, N. and H. G. Truper (1991), The family Chromatiaceae, In The prokaryotes, A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.H. Schleifer Eds., pp3200-3221, Springer, Berlin
  9. Koku, H. K., I. Eroglu, U. Gunduz, M. Yucel, and L. Turker (2002), Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides, Int. J. Hydrogen Energy 27, 1315-1329 https://doi.org/10.1016/S0360-3199(02)00127-1
  10. Vignais, P. M., B. Toussaint, and A. Colbeau (1995), Regulation of hydrogenase gene expression. In Anoxygenic photosynthetic bacteria Chapter 55, R. E. Blankenship, M. T. madigan, and C. E. Bauer Eds., pp1175-1190. Kluwer
  11. Kondrar'eva E. N., I. N. Gogotav, and I. V. Grusinskii (1979), Effect of nitrogen-containing compounds on hydrogen light emission and nitrogen fixation by purple bacteria, Mikrobiologiia 48, 389-395
  12. Rakhely, G., A. T. Kovacs, G. Maroti, B. D. Fodor, G. Csanadi, D. Latinovics, and K. L. Kovacs (2004), Cyanobacterial-type heteropentameric, $NAD^+$-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina, Appl. Environ. Microbiol. 70, 722-728 https://doi.org/10.1128/AEM.70.2.722-728.2004