• Title/Summary/Keyword: Nitrogen purging

Search Result 24, Processing Time 0.019 seconds

Effect of $N_2$ back shielding gas on the property change of GTA weldment (질소 이면보호가스 적용성에 관한 연구)

  • 백광기;안병식
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.12-21
    • /
    • 1987
  • To investigate the suitability of nitrogen gas as an internal purging gas, various properties of GTA welded joints of duplex, 316L stainless steel, Cu-Ni alloy pipe using nitrogen purging gas were evaluated with reference to onew purged with argon gas. Mechanical properties evaluated by the tensile, bending test, and hardness value of welded joints with nitrogen gas purging did not show any difference those with argon gas. General and local corrosion rates of each welded joint prepared by nitrogen gas purging also showed no difference with those prepared by argon gas. Based on the present test results it is confirmed that nitrogen is a suitable purging gas for GTA welding of stainless steels and nonferrous piping systems, which can be used at lower cost instead of argon.

  • PDF

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

THE CHANGE IN SURFACE CONVERSION AND DISCOLORATION IN DENTAL RESTORATIVE COMPOSITE RESIN UNDER DIFFERENT POLISHING METHODS; THE CORRELATION BETWEEN SURFACE CONVERSION AND SURFACE DISCOLORATION (수복용복합레진의 표면처리방법에 따른 표면중합률 및 변색정도의 변화와 그 상관관계에 대한 연구)

  • Park, Sung-Ho;Noh, Byung-Duk;Kim, Mo-Ran;Ahn, Hyun-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.482-486
    • /
    • 2000
  • The purpose of the present study was first, to evaluate the relationship between composite surface conversion and surface discoloration, second, to know if there was difference in surface discoloration between celluloid-strip-finished composite surface and polished surface. In addition, the discoloration of composite surface was also evaluated with visual inspection or digital camera with high resolution monitor, Z100, Tetric Ceram, Spectrum, and Aelitfil were used. The composite surfaces were celluloid-strip finished (group 1), polished (group 2), celluloid-strip finished under nitrogen gas purging (group 3) or only light cured without finishing or polishing under nitrogen gas purging (group 4). The microhardness of each samples were also measured in each group. The samples of each group were also divided into 4 subgroup whether they were immediately placed in disclosing solution (0.2% Elythrosin, pH 7.0) (subgroup1), 1 day after light curing(subgroup 2), 3day after light curing(subgroup 3) or 7 day after light curing(subgroup 4). The computer controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$). The amounts of color difference were compared. The results were as follows; 1. There was no difference in discoloration between celluloid strip finished composite surface and polished surface. 2. The samples discolored more when they were placed in disclosing solution immediately after polymerization than other groups. 3. When the samples were light cured under nitrogen gas purging and without polishing process, they discolored more than other groups even though they showed higher micro hardness. 4. With visual inspection or digital camera, only a limited information was available in detecting composite surface discoloration.

  • PDF

A Study on Flow Rate Properties and Optimal Selection of Nitrogen Membrane Module of Hollow Fiber Type (중공사형 질소 분리막 모듈의 최적 선정과 유량특성에 관한 연구)

  • Kim, Jong-Do;Lee, Sangu-Su;Kim, Jeon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.915-922
    • /
    • 2008
  • The gas separation technology using membrane is widely used to refine various gases in many industry fields and recently is being applying in $CO_2$ recovery technology. In the gas and chemical tanker. nitrogen generators for inerting, purging and padding are on board and most of them have membrane modules of hollow fiber type with long life and vibration resisting properties. Because a membrane module is a key component accounting for 50% of total manufacturing cost of nitrogen generator, adequate selection for it is an important problem. In this paper, the flow performance coefficient based on dimension and specification data of membrane module was relatively selected to compare nitrogen generating capacity of module and various performance tests about the selected PARKER ST6010 membrane module were conducted. As a result, the useful coefficient and basic data in selecting a membrane module were achieved.

A Study on the Properties of Nitrogen Purging in Liquefied Hydrogen Vent Pipes (액화수소 벤트 배관의 질소 퍼지에 대한 적정성 연구)

  • Myoung Sun Wu;Chang Jun Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Hydrogen is one of the most popular eco-friendly energy sources for reducing global warming. To use hydrogen as a conventional fuel, liquid hydrogen plants should introduce waste hydrogen treatment processes. A major safety issue of liquid hydrogen plants is choosing the most suitable purge gas to use in case of an accident. A purge gas prevents the formation of explosive mixed gases in the vent header. In general, nitrogen is the main purge gas used in chemical plants. Nitrogen has a freezing point of -210℃, which is higher than the boiling point of hydrogen. Helium, with a freezing point lower than hydrogen, is instead recommended as a purge gas of the vent header during hydrogen liquefaction. However, helium is roughly 100 times more expensive than nitrogen. To address this issue, this study uses simulations to investigate safe conditions for introducing nitrogen as the purge gas during hydrogen liquefaction. The temperature change from the safety valve to the vent header is evaluated when the external temperature of the safety valve discharge pipe is at 5℃, 10℃, and 20℃. Additionally, the most optimal length for a discharge pipe according to pipe diameter is investigated.

VLD technique for MEAs performance enhancement (MEA의 장기 성능 향상을 위한 VLD 기술 개발)

  • Lim, Sang-Jin;Kim, Hyoung-Juhn;Cho, Eun-Ae;Lee, Sang-Yeop;Lim, Tae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.494-497
    • /
    • 2006
  • For commercialization of polymer electrolytemembrane fuel cell (PEMFC), durability of membrane electrode assemblies (MEAs) has to be improved. Especially, long-term stability of MEA is one of the most important issues for frequent shut-down and start-up processes of PEMFC. The degradation of MEA could be attributed to chemical attack of hydrogen peroxide radicals that are formed at high cell voltages without any special treatment to remove residual hydrogen from anode gas channel after shut-down of the fuel cell. In this study, we investigated the long-term stability of MEA under different on/off operation conditions. Residential hydrogen gas was removed from the anode flow channel by purging air or nitrogen. Also, a dummy resistance was applied to the fuel cell to exhaust residential hydrogen at the anode. In these cases, MEA showed much more stable durability. Electrochemical characteristics of the fuel cell were measured byrepeating the on/off cycles with the hydrogen removal processes. Also, degradation of MEA components was examined by SEM, TEM and XRD analyses.

  • PDF

Nitrogen Isotope Labeled Tetraheme Cytochrome c3 on a Defined Medium

  • Kim, Andre;Park, Jang-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.278-280
    • /
    • 2005
  • To obtain cytochrome $c_3$ labeled with a stable isotope, the conditions of cultivation and the composition of medium for DvMF were examined. The growth of DvMF was steady and reproducible under purging with $N_2$ and under pH control. DvMF was able to go on a defined medium without natural products. The composition of medium containing a small amount of $NH_4C$l as sole nitrogen source was established. Then, uniformly $^{15}N$labeled cytochrome $c_3$ was obtained during the culture of DvMF in a defined medium with $^{15}NH_4$Cl; it was confirmed by $^1H-^{15}N$ HMQC.

Dispersion Polymerization of Acrylamide in Methanol/Water Media

  • Lee, Ki-Chang;Lee, Seung-Eun;Song, Bong-Keun
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.140-144
    • /
    • 2002
  • Dispersion polymerization of acrylamide was carried out in the media of methyl alcohol/$H_2O$ mixtures using hydroxypropyl cellulose and ammonium persulfate as steric stabilizer and initiator, respectively. The effects of concentrations of initiator and steric stabilizer, amount of monomer, polymerization temperature, methyl alcohol/$H_2O$ ratio, and purification of monomer and nitrogen purge on the particle size of the latices and molecular weight of the polymers were investigated. The average particle diameter increased with increasing concentration of initiator, water content in methyl alcohol/$H_2O$ media, and polymerization temperature, but decreased with monomer and stabilizer concentrations. The viscosity average molecular weight increased with increasing concentrations of monomer, steric stabilizer, and water content in dispersion media, but decreased with initiator concentration and polymerization temperature. The PAM polymers prepared with the purified monomer and the nitrogen purging before the reaction showed the highest molecular weight.

The effect of shielding gases on the characteristics of super duplex weld metal (슈퍼 듀플렉스 용접부에 미치는 보호가스의 영향)

  • Hong, In-Pyo;Lee, Cheol-Hwan;Kim, Yu-Gi;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.209-211
    • /
    • 2005
  • Super duplex stainless steels have been used for offshore oil and gas piping systems which are subject to corrosion atmosphere, because they have excellent resistance to Stress Corrosion Cracking (SCC) and Pitting corrosion and high strength/weight ratio. Normally, the welding for duplex stainless steels has been peformed using GTAW with Ar shielding gas. However, in case of using Ar as shielding gas, the corrosion resistance at root weld metal will be deteriorated due to loss of nitrogen from weld deposit during welding. It is wellknown that the corrosion resistance of super duplex stainless can be restored by addition of nitrogen as shielding gas. In this study, we made super duplex welding with using several kinds of shielding and purging gases and investigated the relationship between shielding gas and corrosion resistance. Consequently, it was shown that corrosion resistance of weld deposit can be restored by addition of $N_{2}$ as shielding gas.

  • PDF