• Title/Summary/Keyword: Nitrogen doped ZnO

Search Result 22, Processing Time 0.036 seconds

Atomic Layer Deposition of Nitrogen Doped ZnO and Application for Highly Sensitive Coreshell Nanowire Photo Detector

  • Jeong, Han-Eol;Gang, Hye-Min;Cheon, Tae-Hun;Kim, Su-Hyeon;Kim, Do-Yeong;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.26.1-26.1
    • /
    • 2011
  • We investigated the atomic layer deposition (ALD) process for nitrogen doped ZnO and the application for n-ZnO : N/p-Si (NW) coaxial hetero-junction photodetectors. ALD ZnO:N was deposited using diethylzinc (DEZ) and diluted $NH_4OH$ at $150^{\circ}C$ of substrate temperature. About 100~300 nm diameter and 5 um length of Si nanowires array were prepared using electroless etching technique in 0.108 g of $AgNO_3$ melted 20 ml HF liquid at $75^{\circ}C$. TEM images showed ZnO were deposited on densely packed SiNW structure achieving extraordinary conformality. When UV (360 nm) light was illuminated on n-ZnO:N/p-SiNW, I-V curve showed about three times larger photocurrent generation than film structure at 10 V reverse bias. Especially, at 660 nm wave length, the coaxial structure has 90.8% of external quantum efficiency (EQE) and 0.573 A/W of responsivity.

  • PDF

Structural, Optical and Electrical Properties of N-doped ZnO Nanofilms by Plasma Enhanced Atomic Layer Deposition (플라즈마 원자층 증착 방법을 이용한 N-doped ZnO 나노박막의 구조적.광학적.전기적 특성)

  • Kim, Jin-Hwan;Yang, Wan-Youn;Hahn, Yoon-Bong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.357-360
    • /
    • 2011
  • N-doped ZnO nanofilms were prepared by plasma enhanced atomic layer deposition method. $Zn(C_{2}H_{5})_{2}$, $O_{2}$ and $N_{2}$ were used as Zn, O and N sources, respectively, for N-doped ZnO films under variation of radio frequency (rf) power from 50-300W. Structural, optical and electrical properties of as-grown ZnO films were investigated with Xray diffraction(XRD), photoluminescence(PL) and Hall-effect measurements, respectively. Nitrogen content and p-type conductivity in ZnO nanofilms increased with the rf power.

Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition (원자층 증착법으로 성장된 ZnO 박막의 질소 도핑에 대한 연구)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.642-647
    • /
    • 2014
  • For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.

Investigation on the Electrical Properties of Ion Implanted ZnO Thin Film (이온 주입된 ZnO 박막의 전기적 특성 연구)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol;Lee, Jung-Kun;Nastasi, Michael
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.49-50
    • /
    • 2005
  • Nitrogen and phosphorus ions were implanted into ZnO thin film fabricated by pulsed laser deposition. ion implanted ZnO thin films were annealed from $700^{\circ}C$ to $1000^{\circ}C$ using rapid thermal annealing process. The electron concentration was changed form $10^{20}$ to $10^{18}/cm^3$. Effect of nitrogen and phosphorus in ZnO thin films was certified and the structural and optical properties of nitrogen and phosphorus doped ZnO thin films depending on concentration of nitrogen and phosphorus were investigated.

  • PDF

Laser annealing on ZnO:P thin films (ZnO:P 박막의 레이저 어닐링 연구)

  • Chang, Hyun-Woo;Kang, Hong-Seong;Kim, Gun-Hee;Lim, Sung-Hoon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.51-52
    • /
    • 2005
  • Phosphorus doped ZnO thin films on (001) $Al_2O_3$ substrate have been prepared by a pulsed laser deposition (PLD) technique using a Nd:YAG laser. After deposition, phosphorus doped ZnO thin films have been annealed in vacuum, air, nitrogen, and oxygen ambients using pulsed Nd:YAG laser. We report the electrical properties of phosphorus doped ZnO thin films with the variation of the laser annealing conditions for the applications of optoelectronic devices.

  • PDF

Optical properties of nitrogen doped ZnO thin films grown by dielectric barrier discharge plasma-assisted pulsed laser deposition (Dielectric barrier discharge 플라즈마 펄스 레이져 증착법을 통해 성장한 nitrogen 도핑 된 산화아연 박막의 광학적 특성)

  • Lee, Deuk-Hee;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1256_1257
    • /
    • 2009
  • We have grown, for the first time to our knowledge, N-doped ZnO thin films on sapphire substrate by employing novel dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting to find a dominant acceptor-bound exciton peak ($A^0X$) that indicates the successful p-type doping of ZnO with N.

  • PDF

Nano-structural Characteristics of N-doped ZnO Thin Films (N-doped ZnO 박막의 미세 구조 특성)

  • Lee, Eun-Ju;Zhang, Ruirui;Park, Jae-Don;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2385-2390
    • /
    • 2009
  • N-doped ZnO thin films with c-axis preferred orientation were prepared on p-Si(100) wafers, using an RF magnetron sputter deposition. For ZnO deposition, $N_2O$ gas was employed as a dopant source and various deposition conditions such as $N_2O$ gas fraction and RF power were applied. The depth pofiles of the nitrogen [N] atoms incorporated into the ZnO thin films were investigated by Auger Electron Spectroscopy(AES) and the nano-scale structural characteristics of the N-doped ZnO thin films were also investigated by a scanning electron microscope (SEM) technique.

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Evaluation of Acceptor Binding Energy of Nitrogen-Doped Zinc Oxide Thin Films Grown by Dielectric Barrier Discharge in Pulsed Laser Deposition

  • Lee, Deuk-Hee;Chun, Yoon-Soo;Lee, Sang-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.200-203
    • /
    • 2011
  • In this research, nitrogen (N)-doped zinc oxide (ZnO) thin films have been grown on a sapphire substrate by dielectric barrier discharge (DBD) in pulsed laser deposition (PLD). DBD has been used as an effective way for massive in-situ generation of N-plasma under conventional PLD process conditions. Low-temperature photoluminescence spectra of N-doped ZnO thin films provided near-band-edge emission after a thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound excitation peak ($A^{\circ}X$) that indicated acceptor doping of ZnO with N. The acceptor binding energy of the N acceptor was estimated to be approximately 145 MeV based on the results of temperature-dependent photoluminescence (PL) measurements.

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.