Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.10.642

Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition  

Kim, Doyoung (School of Electricity and Electronics, Ulsan College)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.10, 2014 , pp. 642-647 More about this Journal
Abstract
For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.
Keywords
Atomic layer deposition p-type ZnO; Nitrogen; Dopant; Photoluminescence spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 42, 481 (2003).   DOI
2 J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, Mat. Sci. Semi. Proc., 5, 491 (2003).
3 Y. J. Lin, C. L. Tsai, Y. M. Lu, and C. J. Liu, J. Appl. Phys., 99, 4 (2006).
4 S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B, 63, 7 (2001).
5 K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett., 68, 403 (1996).   DOI   ScienceOn
6 K. H. Lee, N. I. Cho, H. G. Nam, and E. J. Yun, J. Korean Phys. Soc., 53, 3273 (2008).   DOI   ScienceOn
7 U. Choppali and B. P. Gorman, Opt. Mater., 31, 143 (2008).   DOI
8 J. P. Zhnag, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J. Wang, J. Appl. Phys., 102, 114903 (2007).   DOI
9 K. G. Saw, K. Ibrahim, Y. T. Lim, and M. K. Chai, Thin Solid Films, 515, 2879 (2007).   DOI   ScienceOn
10 D. Hwang, M. Oh, J. Lim, and S. Park, J. Phys. D: Appl. Phys., 40, R387 (2007).   DOI   ScienceOn
11 S. Y. Huang, S. Xu, J. W. Chai, Q. J. Cheng, J. D. Long, and K. Ostrikov, Mat. Lett., 63, 972 (2009).   DOI
12 Y. R. Ryu, S. Zhu!, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Crystal Growth, 216, 330 (2000).   DOI   ScienceOn
13 W. Xiang-Hu, Y. Bin, W. Zhi-Peng, S. De-Zhen1, Z. Zhen-Zhong, L. You-Ming, Z. Ji-Ying, and F. Xi-Wu, Chin. Phys. Lett., 25, 2993 (2008).   DOI
14 J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, Appl. Phys. Lett., 85, 3134 (2004).   DOI   ScienceOn
15 V. Vaithianathan, B. T. Lee, and S. S. Kim, Appl. Phys. Lett., 86, 062101 (2005).   DOI   ScienceOn
16 Y. Zhu, S. Lin, Y. Zhang, Z. Ye, Y. Lu, J. Lu, and B. Zhao, Appl. Surf. Sci., 255, 6201 (2009).   DOI
17 P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, B. Yao, B. H. Li, Y. Bai, and X. W. Fan, Appl. Surf. Sci., 254, 2900 (2008).   DOI   ScienceOn
18 M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, AIP Advances, 1, 022105 (2011)   DOI
19 Z. Zi-Wen, H. Li-Zhong, Z. He-Qiu, S. Jing-Chang, B. Ji-Ming, L. Hong-Wei, H. Bing-Zhi, Y. Dong-Qi, C. Xi, and F. Qiang, Chin. Phys. Lett., 26, 057305 (2009).   DOI
20 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79, 7983 (1996).   DOI   ScienceOn
21 M. Godlewski, E. Guziewicz, J. Szade, A. Wojcik-Glodowska, L. Wachnicki, T. Krajewski, K. Kopalko, R. Jakiela, S. Yatsunenko, E. Przezdziecka, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, Microelec. Eng., 85, 2434 (2008).   DOI