• Title/Summary/Keyword: Nitric oxide synthase inhibitors

Search Result 85, Processing Time 0.035 seconds

EFFECTS OF NITRIC OXIDE SYNTHASE INHIBITORS ON OSTEOCLAST-LIKE CELL FORMATION

  • Ahn, Seung-Kyu;Kim, Jung-Kun;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.715-722
    • /
    • 1995
  • Orthodontic tooth movement in response to orthodontic force results from actions of osteoclasts and osteeoblasts in the cell level. Convincing evidence has now been provided to support the view that osteoclasts are derived from mononuclear cells that originate in the bone marrow or other hematopoietic organs and they migrate to the bones via vascular routes. Nitric oxide(NO), which accounts for the biological properties of endothelium-derived relaxing factor(EDRF), is the endogenous stimulator of soluble guanylate cylase. The discovery of the formation of nitric oxide(NO) from L-arginine in mammalian tissues and its biological roles has, in the last 7 years, thrown new light onto many areas of research. Data from experiments in vitro showed that N-metyl-L-arginine(L-NMA) and L-nitro-L- arginine(L-NAME) are competitive inhibitors of nitric oxide synthase. This study suggest that the multinucleated cells in our culture have characteristics of osteoclasts and that the potential bone cell activity of nitric oxide in vitro may be mediated in part by stimulation of marrow mononuclear cells to form osteoclast-like cells. Bone marrow cells were obtaineed from tibia of 19-days old chick embryo. After sacrifice, tibia was quickly dissected and the bone were then split to expose the medullary bone. The cells were attached for 4 hours and the nonadherent cells were collected. Marrow cells weere cultured in 96-well plate in medium 199. To examine the number of TRAP-positive multinucleated cells(MNCs), $10^{-8}\;M\;Vit=D_3$ and various concentration of L-NMA and L-NAME weere added at the beginning of cultures and with each medium change. After 7 days of culture. tartrate-resistant acid phosphatase(TRAP) staining was performed for microscopic evaluation. Cells haying more than three nuclei per cell were counted as MNCs. The obsrved results were as follows;1. 1,25-dihydroxyvitamine $D_3$ stimulated the osteoclast-like multinucleated cells in cultures of chick embryo bone marrow. 2. Nitric oxide synthase inhibitors(NOSI ; N-NMA, N-NAME) stimulated the osteoclast-like cells in cultures of chick embry bone marrow. 3. 1,25-dihydroxyvitamine$D_3$ and nitric oxide synthase inhibitors did not appear to have additive effect on the generation of TRAP-positive MNCs. These results suggest that nitric oxide synthase inhibitors may stimulate the osteoclast-like multinucleated cell formation and fusion in cultures of chick bone marrow.

  • PDF

Inhibitors of Inducible Nitric Oxide Synthase Expression from Artemisia iwayomogi

  • Ahn, Hanna;Kim, Ji-Yeon;Lee, Hwa-Jin;Kim, Yong-Kyun;Ryu, Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.301-305
    • /
    • 2003
  • Nitric oxide (NO) is an important bioactive agent that mediates a wide variety of physiological and pathophysiological events. NO overproduction by inducible nitric oxide synthase (iNOS) results in severe hypotension and inflammation. This investigation is part of a study to discover new iNOS inhibitors from medicinal plants using a macrophage cell culture system. Two sesquiterpenes (1 and 2) were isolated from Artemisia iwayomogi (Compositae) and were found to inhibit NO synthesis ($IC_{50} 3.64 \mu g/mL and 2.81 \mu$g/mL, respectively) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Their structures were identified as 3-Ο-methyl-iso-secotanapartholide (1) and iso-secotanapartholide (2). Compounds 1 and 2 inhibited the LPS-induced expression of the iNOS enzyme in the RAW 264.7 cells. The inhibition of NO production via the down regulation of iNOS expression may substantially modulate the inflammatory responses.

Diesel Exhaust Particles and Airway Inflammation: Effect of Nitric Oxide Synthase Inhibitors

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.121-128
    • /
    • 2002
  • This study was carried out to investigate if nitric oxide synthase (NOS) inhibitors modulate airway inflammation induced by diesel exhaust particles (DEP). N$\^$G/-nitro-L-arginine methyl ester (L-NAME), a potent constitutive NOS (cNOS) inhibitor, and aminoguanidine (AG), a selective inducible NOS (iNOS) inhibitor, were administered to mice in their drinking water for 7 weeks. Airway inflammation was elicited by the repeated intratracheal administration of DEP. The results showed that macrophages, inflammatory eosinophils and neutrophils in bronchoalveolar lavage (BAL) fluids by intratracheal DEP instillation were significantly suppressed in the mice treated with two NOS inhibitors toghther with DEP. The suppression of these cells was more effective in AG treated groups than in L -NAME treated groups. NOS inhibitor treatment also reduced interleukin -5 (IL-5 in the BAL fluids and lung homogenates. Additionally, it was found that eosinophil peroxidase (EPO) activity in the BAL fluids was also decreased by NOS inhibitor treatment. These results suggest that nitric oxide (NO) is produced in airway inflammation by repeated DEP instillation, and that iNOS inhibition as well as cNOS inhibition can play a modulating role in this airway inflammation by DEP.

The Effects of Endogenously and Exogenously Induced Nitric Oxides on the Nociperception of Rats (내.외인성으로 유도된 Nitric Oxide가 흰쥐의 통각전달에 미치는 효과)

  • 방준석;류정수;신창열;양성준;송현주;박전희;제현동;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.116-124
    • /
    • 2001
  • Nitric oxide is a labile, gaseous, broad spectrum second messenger that used in various tissues and cells. If it is induced by endogenously and exogenously in the neuronal cells, it is able to mediate analgesia or hyperalgesia at the periphery and in the spinal level respectively. This dual role of nitric oxide in the sensory system is very intriguing but has not been fully understood yet. In this experiment, acetylcholine (300 $\mu$g/paw), sodium nitroprusside (600 $\mu$g/paw), and L-arginine (300 $\mu$g/paw) represented antinociceptive effect to noxious topical stimulus, but pronociceptive responses followed by spinally application (20$\mu$g/5$\mu$l, 10$\mu$g/3$\mu$l, 500$\mu$g/5$\mu$l respectively). Calcium ion is critical element which activates nitric oxide synthase, therefore verapamil (300 $\mu$g/paw) and NOS inhibitor (20 mg/kg, L-NAME or L-NOArg) are injected into right hind paw (i.pl.). When verapamil is combined with NOS inhibitors analgesic effects through NO-cGMP pathway are inhibited as compared with ACh alone. Diluted formalin (2.5%), when injected into rats'hind paw (0.05 ml), elicited a biphasic algesic responses and nitric oxide had an analgesic effect on both $A\delta$ and C sensory nerve fibers which manipulate the phases respective1y. Nitric oxides, which produced from constitutive nitric oxide synthase, activated cyclooxygenase-type I and then prostaglandins are produced from them. So, indomethacin and ibuprofen, inhibitors of COX$_1$enzyme, when pretreated intraperitoneally (100 mg/kg) could reduce the hyperalgesic state. From these results, it is possible to imagine that the intrathecally administered NO donors expressed hyperalgesia through both long-term potentiation mechanism and arachidonic acid-prostaglandin cascade.

  • PDF

IV Morphine Produced Spinal Antinociception Partly by Nitric Oxide (모르핀 정맥 투여시 척수 진통 작용 기전에 기여하는 Nitric Oxide)

  • Song, Ho-Kyung;Park, Soo-Seog;Kim, Jung-Tae
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Background: The role of nitric oxide(NO) in analgesia from opioids is controversial. On the one hand, IV morphine analgesia is enhanced by IV injection of NO synthase inhibitors. On the other hand, IV morphine results in increased release of NO in the spinal cord. There have been no behavioral studies examining the interaction between IV morphine and intrathecal injection of drugs which affect NO synthesis. Method: Rats were prepared with chronic lumbar intrathecal catheters and were tested withdrawal latency on the hot plate after 3~5 days of surgery. Antinociception was determinined in response to a heat stimulus to the hind paw before and after IV injection of morphine, 2.5 mg/kg. Twenty minutes after morphine injection, rats received intrathecal injection of saline or the NO synthase inhibitors, L-NMMA or TRIM, the NO scavenger, PTIO, or the NO synthase substrate, L-Arginine. Intrathecal injections, separated by 15 min, were made in each rats and measurements were obtained every 5 min. Result: Mophine produced a 60~70% maximal antinociceptive response to a heat stimulus in all animals for 60 min in control experiments. Intrathecal injection of idazoxane decreased antinociception of IV morphine. The NO synthase inhibitors and the NO scavenger produced dose-dependent decreases in antinociceptive effect of morphine, whereas saline as a control group and L-Arginine as the NO substrate had no effect on antinociception of morphine. Conclusion: The present study supports the evidences that systemic morphine increase the nitrite in cerebrospinal fluid and dorsal horn. These data suggest that the synthesis of NO in the spinal cord may be important to the analgesic effect of IV morphine and increased NO in spinal cord has different action from the supraspinal NO.

  • PDF

Identification and Characterization of Nitric Oxide Synthase in Salmonella typhimurium

  • Choi, Don-Woong;Oh, Hye-Young;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.407-412
    • /
    • 2000
  • The presence of the nitric oxide synthase (NOS) enzyme from Salmonella typhimurium (S. typhimurium) was identified by measuring radiolabeled L-$[^3H]$citrulline and NO, and Western blot analysis. NOS was partially purified by both Mono Q ion exchange and Superose 12HR size exclusion column chromatography, sequentially. The molecular weight of NOS was estimated to be 93.3 kDa by Western blot analysis. The enzyme showed a significant dependency on the typical NOS cofactors; an apparent Km for L-arginine of 34.7 mM and maximum activity between $37^{\circ}C$ and $43^{\circ}C$. The activity was inhibited by NOS inhibitors such as aminoguanidine and $N^{G}$ $N^{G}$-dimethyl-L-arginine. taken together, partially purified NOS in S. typhimurium is assumed to be a different isoform of mammalian NOSs.OSs.

  • PDF

Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana

  • Cho, Song-Mi;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • 2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced by 2R,3R-butanediol and correlated with expression of genes encoding nitrate reductase and nitric oxide synthase. Co-treatment of 2R,3R-butanediol with an inhibitor of nitrate reductase or an inhibitor of nitric oxide synthase lowered nitric oxide production and lessened induced drought tolerance. Increases in hydrogen peroxide were negated by co-treatment of 2R,3R-butanediol with inhibitors of NADPH oxidase, or peroxidase. These findings support the volatile 2R,3R-butanediol synthesized by certain rhizobacteria is an active player in induction of drought tolerance through mechanisms involving nitric oxide and hydrogen peroxide production.

Two acyl phenol glucosides as Inhibitors of iNOS from Popolus davidiana in LPS- activated macrophages

  • Kim, Ji-Sun;Lee, Hwa-Jin;Kim, Yong-Kyun;Ryu, Jae-Ha
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.203.2-204
    • /
    • 2003
  • Nitric oxide (NO) produced in large amounts by inducible nitric oxide synthase (iNOS) is known to be responsible for the vasodilation and hypotension observed in septic shock and inflammation. Inhibitors of iNOS, thus, may be useful candidate for the treatment of inflammatory diseases accompanied by the overproduction of NO. We prepared alcoholic extracts of woody plants and screened the inhibitory activity of NO production in lipopolysaccharide (LPS)-activated macrophages after the treatment of these extracts. (omitted)

  • PDF

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages (고량강으로부터 분리된 galangin의 RAW 264.7 세포주에서 LPS로 유도된 nitric oxide 생성 저해활성)

  • Lee, Hwa Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.511-515
    • /
    • 2014
  • In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.

Suppression Effect of Curcuma longa Rhizome-Derived Components against Nitric Oxide Synthase

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.212-215
    • /
    • 2009
  • The inhibitory effects of Curcuma longa rhizome-derived materials against nitric oxide (NO) production were assessed. The inhibitory effect (57%) on NO production was evidenced by the methanol extract of C. longa at $1\;{\mu}g/mL$. In the fractionation of the methanol extract, the ethyl acetate fraction evidenced an inhibitory effect greater than 62.1% at $1\;{\mu}g/mL$. The active constituent was identified as curcumin. Curcumin exerted potent inhibitory effects of 78.7 and 65.7% at concentrations of 1 and $0.5\;{\mu}g/mL$, respectively. Furthermore, the inhibitory effect of ar-turmerone was measured as 31.3 and 15.8% at 1 and $0.5\;{\mu}g/mL$, respectively. The iNOS expression-suppressive effects of curcumin were assessed via western blot analysis. Our results suggest that curcumin and ar-turmerone may prove useful in the development of new types of NO inhibitors.