Browse > Article
http://dx.doi.org/10.9721/KJFST.2014.46.4.511

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages  

Lee, Hwa Jin (Department of Natural Medicine Resources, Semyung University)
Publication Information
Korean Journal of Food Science and Technology / v.46, no.4, 2014 , pp. 511-515 More about this Journal
Abstract
In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.
Keywords
Alpinia officinarum; Zingiberaceae; nitric oxide; inducible nitric oxide synthase; flavonol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur. Heart J. 33: 829-837 (2012)   DOI   ScienceOn
2 Garthwaite J. New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol. Cell Biochem. 334: 221-232 (2010)   DOI
3 Ly TN, Yamauchi R, Kato K. Volatile Components of the Essential Oils in Galanga (Alpinia officinarum Hance) from Vietnam. Food Sci. Technol. Res. 7: 303-306 (2001)   DOI
4 Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 357: 593-615 (2001)   DOI   ScienceOn
5 Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 43: 521-531 (1999)   DOI
6 De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev. Respir. Med. 3: 511-521 (2009)   DOI
7 Shin D, Kinoshita K, Koyama K, Takahashi K. Antiemetic principles of Alpinia officinarum. J. Nat. Prod. 65: 1315-1318 (2002)   DOI   ScienceOn
8 Yadav PN, Liu Z, Rafi MM.. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. J. Pharmacol. Exp. Ther. 30: 925-931 (2003)
9 Lee KH, Rhee KH. Anti-tumor activity of the extract of Alpinia officinarum using hollow fiber assay. Korean J. Food Nutr. 24: 496-500 (2011)   과학기술학회마을   DOI
10 Kim HJ, Yoo MY, Kim HK, Lee BH, Oh KS, Seo HW, Yon GH, Gendaram O, Kwon DY, Kim YS, Ryu SY. Vasorelaxation effect of the falvonoids from the rhizome extract of Alpinia officinarum on isolated rat thoracic aorta. Kor. J. Pharmacogn. 37: 56-59 (2006)
11 Lee HJ, Kim JS, Ryu JH. Suppression of inducible nitric oxide synthase expression by diarylheptanoids from Alpinia officinarum. Planta Med. 72: 68-71 (2006)   DOI
12 Kim HH, Bae Y, Kim SH. Galangin attenuates mast cell-mediated allergic inflammation. Food Chem. Toxicol. 57: 209-216 (2013)   DOI
13 Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm. Biol. 51: 607-613 (2013)   DOI
14 Wawer I, Zielinska A. $^{13}C$ CP/MAS NMR studies of flavonoids. Magn. Reson. Chem. 39: 374-380 (2001)   DOI
15 Su L, Chen X, Wu J, Lin B, Zhang H, Lan L, Luo H. Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem. Toxicol. 62: 810-816 (2013)   DOI
16 Morello S, Vellecco V, Alfieri A, Mascolo N, Cicala C. Vasorelaxant effect of the flavonoid galangin on isolated rat thoracic aorta. Life Sci. 78: 825-830 (2006)   DOI   ScienceOn
17 Lotito SB, Frei B. Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J. Biol. Chem. 281: 37102-37110 (2006)   DOI   ScienceOn
18 Suzuki R, Tanaka T, Yamamoto M, Sakagami H, Tomomura M, Tomomura A, Satoh K, Shirataki Y. In search of new biological activities of isolates from Odontoglossum Harvengtense 'Tutu'. In Vivo. 26: 993-999 (2012)
19 Matsuda H, Ando S, Kato T, Morikawa T, Yoshikawa M. Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorgan. Med. Chem. 14: 138-142 (2006)   DOI   ScienceOn
20 Kim JS, Lee HJ, Lee MH, Kim J, Jin C, Ryu JH. Luteolin inhibits LPS-stimulated inducible nitric oxide synthase expression in BV-2 microglial cells. Planta Med. 72: 65-68 (2006)   DOI   ScienceOn
21 Kim JS, Kim JY, Lee HJ, Lim HJ, Lee DY, Kim DH, Ryu JH. Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells. Phytother. Res. 24: 748-753 (2010)
22 Ryu JH, Ahn H, Lee HJ. Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kazinoki. Fitoterapia 74: 350-354 (2003)   DOI   ScienceOn
23 Endale M, Park SC, Kim S, Kim SH, Yang Y, Cho JY, Rhee MH. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-${\kappa}B$-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218: 1452-1467 (2013)   DOI
24 Kim HK, Park HR, Lee JS, Chung TS, Chung HY, Chung J. Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology 8: 399-408 (2007)   DOI   ScienceOn
25 Kim TH, Li H, Wu Q, Lee HJ, Ryu JH. A new labdane diterpenoid with anti-inflammatory activity from Thuja orientalis. J. Ethnopharmacol. 146: 760-767 (2013)   DOI   ScienceOn
26 Li H, Kim JY, Hyeon J, Lee HJ, Ryu JH. In vitro antiinflammatory activity of a new sesquiterpene lactone isolated from Siegesbeckia glabrescens. Phytother. Res. 25: 1323-1327 (2011)
27 Zhao F, Gao Z, Jiao W, Chen L, Chen L, Yao X. In vitro antiinflammatory effects of beta-carboline alkaloids, isolated from Picrasma quassioides, through inhibition of the iNOS pathway. Planta Med. 78: 1906-1911 (2012)   DOI
28 Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121-2126 (1998)   DOI   ScienceOn
29 Luo Y, Liu M, Yao X, Xia Y, Dai Y, Chou G, Wang Z. Total alkaloids from Radix Linderae prevent the production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by suppressing NF-kappaB and MAPKs activation. Cytokine 46: 104-110 (2009)   DOI   ScienceOn
30 Ly TN, Shimoyamada M, Kato K, Yamauchi R. Isolation and characterization of some anti-oxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J. Agr. Food Chem. 51: 4924-4929 (2003)   DOI   ScienceOn
31 Lee HJ, Li H, Chang HR, Jung H, Lee DY. Ryu JH. (-)-Nyasol, isolated from Anemarrhena asphodeloides suppresses neuroinflammatory response through the inhibition of $I-{\kappa}B{\alpha}$ degradation in LPS-stimulated BV-2 microglial cells. J. Enzym Inhib. Med. Chem. 28: 954-959 (2013)   DOI