• Title/Summary/Keyword: Nitric Oxide(No)

Search Result 2,950, Processing Time 0.043 seconds

The Effects of Moxi tar on iNOS Synthase in RAW 264.7 Cell (구진(灸津)(Moxi tar)이 면역세포(免疫細胞)에서 iNOS합성에 미치는 영향(影響))

  • Ahn Sung-Hun;Koo Sung-Tae;Do Jin-Woo;Kim Jong-Sung;Kim Kwang-Soo;Yang Beom-Sik;Kim Kyung-Sik;Sohn In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.17 no.1
    • /
    • pp.33-46
    • /
    • 2000
  • This study was produced to examine the effects of moxibution that had been played a role of traditional oriental medical treatment on disease. We used LPS and INF-gamma in RAW 264.7 cell line to produce Nitric Oxide(NO). And results was that Moxi tar decreased NO in activated RAW 264.7 cell by LPS and INF-gamma significantly, which was decreasing Nitric Oxide Synthase. So we proposed that Moxi tar had anti-inflammation and anti-cytotoxity in RAW 264.7 cell by decreasing Nitric Oxide Synthase.

  • PDF

Involvement of Nitric Oxide During In Vitro Fertilization and Early Embryonic Development in Mice

  • Kim, Bo-Hyun;Kim, Chang-Hong;Jung, Kyu-Young;Jeon, Byung-Hun;Ju, Eun-Jin;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.86-93
    • /
    • 2004
  • Nitric oxide (NO) has emerged as an important intracellular and intercellular messenger, controlling many physiological processes and participating in the fertilization process via the autocrine and paracrine mechanisms. This study investigated whether nitric oxide synthase (NOS) inhibitior (L-NAME) and L-arginine could regulate in vitro fertilization and early embryonic development in mice. Mouse epididymal spermatozoa, oocytes, and embryos were incubated in mediums of variable conditions with and without L-NAME or L-arginine (0.5, 1, 5 and 10mM). Fertilization rate and early embryonic development were significantly inhibited by treating sperms or oocytes with L-NAME (93.8% vs 66.3%,92.1% vs 60.3%), but not with L-arginine. In contrast, fertilization rate and early embryonic development were conspicuously reduced when L-NAME or L-arginine was added to the culture media for embryos. Early embryonic development was inhibited by microinjection of L-NAME into the fertilized embryosin a dose-dependent manner, but only by high concentrations of L-arginine. These results suggest that a moderate amount of NO production is essential for fertilization and early embryo development in mice.

The Role of Nitric Oxide in Mycobacterial Infections

  • Yang, Chul-Su;Yuk, Jae-Min;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.

Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants

  • Li, Rui;Sheng, Jiping;Shen, Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.121-132
    • /
    • 2020
  • β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.

Nitric Oxide Generation from Peritoneal Macrophages by Salvia miltiorrhiza Root Water Extract (단삼(丹蔘) 수침액에 의한 복강대식세포로부터 산화질소의 발생)

  • Jo, Hyun-Ju;Moon, Seok-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.143-152
    • /
    • 1999
  • Dansam, the root of Salvia miltiorrhiza Bge, (Labiatae), has a bitter taste and a slightly 'cold' property, and is nontoxic. In the present study, effect of Dansam on nitric oxide (NO) generation from peritoneal macrophags was examined. Dansam had no effect on NO generation by itself, whereas recombinant interferon-${\gamma}\;(rIFN-{\gamma})$ alone had modest activity. When Dansam was used in combination with $rIFN-{\gamma}$, there was a marked cooperative induction of NO generation in a dose-dependent manner, The optimal effect of Dansam on NO generation was shown at 6 hr after treatment with $rIFN-{\gamma}$. Furthermore, the effect of Dansam was mainly dependent on Dansam-induced tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ secretion. These results suggest that Dansam induces NO generation from macrophages by the result of Dansam-induced $TNF-{\alpha}$ secretion.

  • PDF

Malondialdehyde, Glutathione, and Nitric Oxide Levels in Toxoplasma gondii Seropositive Patients

  • Karaman, Ulku;Celik, Tuncay;Kiran, Tugba Raika;Colak, Cemil;Daldal, Nilgun Ulfet
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.293-295
    • /
    • 2008
  • The aim of this study was to investigate the difference in the serum malondialdehyde (MDA), glutathione (GSH), and nitric oxide (NO) levels between normal and T. gondii-infected patients. To this end, MDA, GSH, and NO levels in the sera of 37 seropositive patients and 40 participants in the control group were evaluated. In Toxoplasma ELISA, IgG results of the patient group were $1,013.0{\pm}543.8$ in optical density (mean ${\pm}$ SD). A statistically significant difference was found between patients and the control group in terms of MDA, GSH, and NO levels. A decrease in GSH activity was detected, while MDA and NO levels increased significantly. Consequently, it is suggested that the use of antioxidant vitamins in addition to a parasite treatment shall prove useful. The high infection vs control ratio of MDA and NO levels probably suggests the occurrence as a mechanism of tissue damage in cases of chronic toxoplasmosis. Moreover, it is recommended that the patient levels of MDA, GSH, and NO should be evaluated in toxoplasmosis.

Simultaneous Electroanalysis of Nitric Oxide and Nitrite

  • Oritani, Tadato;Okajima, Takeyoshi;Kitamura, Fusao;Ohsaka, Takeo
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.209-211
    • /
    • 2002
  • The simultaneous sensing of nitric oxide (NO) and its metabolite, nitrite $(NO_2^-)$ has been studied by Osteryoung square-wave voltarnmetery (OSWV) in physiological pH solution (0.1 M phosphate buffer solution, pH 7.2). Using an electrochemically pretreated glassy carbon (GC) electrode, OSWV was successfully applied to observe the well-separated oxidation peaks at ca. 0.58 and 0.80V vs. Ag/AgCI for NO and $(NO_2^-)$, respectively. This clear separation between the NO and $(NO_2^-)$ oxidation peaks may be due to the formation of surface oxides (e.g., quinone (C=O) or carboxylic $(COO^-)$ group) and surface defects introduced by the electrochemical pretreatment of GC electrodes.

Inhibitory Effect of Panax notoginseng on Nitric Oxide Synthase, Cyclo-oxygenase-2 and Neutrophil Functions

  • Park, Soon-Gi;Joo, Shin-Tak;Ban, Chang-Gyu;Moon, Jin-Young;Park, Sun-Dong;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1295-1302
    • /
    • 2006
  • Our preliminary aim is to elucidate the pharmacokinetic features of the PNS(Panax notoginseng Buck F.H. Chen. (Arialiaceae) root). First, we assessed the prevention of neurtrophil functions. A Panax notoginseng inhibited neutrophil functions, including degranulation, superoxide generation, and leukotriene B4 production, without any effect on 5-lipoxygenase activity. This Panax notoginseng reduced nitric oxide (NO) and prostaglandin E2 production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase, cyclo-oxygenase-2 or cyclo-oxygenase-1 was observed. Panax notoginseng significantly reduced mouse paw oedema induced by carrageenan. The results indicate that Panax notoginseng exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and prostaglandin E2 production, which could be due to a decreased expression of inducible NO synthase and cyclo-oxygenase-2.

Effects of Serum on Nitric Oxide Production in Embryonic Mouse Liver Cell Line BNL CL.2 (혈청이 마우스 간 세포주 BNL CL.2의 Nitric Oxide 생성에 미치는 영향)

  • 김유현;김신무;배현옥;유지창;정헌택;진효상
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Nitric oxide (NO) plays an important role in immunologic defense, and influences upon the functioning of secretory tissues and cells. It also exhibits cytotoxic/cytostatic activity as one of major operating effectors of the cellular immunity system. We investigated the effects of serum on the cell damages and NO production in the mouse liver cell line BNL CL.2 to establish the role of NO. We observed that, when BNL CL.2 cells were cultured in serum-free medium, they were induced to cell damage by the stimulation of IFN-$\gamma$ alone or IFN-$\gamma$ plus LPS. Serum-starved cells showed large amount of nitrite accumulation and NO synthase (NOS) expression in response to IFN-$\gamma$ alone in dose- and time- dependent manners, but serum-supplied cells did not The production of NO was blocked by protein tyrosine kinase (PTK) inhibitors, genistein and herbimycin. These results suggest that the deprivation of serum in the BNL CL.2 cell culture medium might primed with the cells to produce NO when the cells are triggered by IFN-$\gamma$ and the involvement of PTK signal transduction pathway in the expression of NOS gene in murine hepatocytes.

  • PDF

Inducible nitric oxide synthase is involved in neuronal death induced by trimethyltin in the rat hippocampus (Trimethyltin에 의한 랫드 해마의 신경세포 사멸과 iNOS의 연관성)

  • Jang, Sukwon;Choi, Sungyoung;Park, Changnam;Ahn, Meejung;Shin, Taekyun;Kim, Seungjoon
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.185-191
    • /
    • 2011
  • Trimethyltin chloride (TMT) has been used as a neurotoxin for inducing brain dysfunction and neuronal death. Neuronal death in the hippocampus by TMT may generate excessive nitric oxide, but there are few studies about nitric oxide synthase enzyme involved in the synthesis of nitric oxide. The purpose of present study is to analyze the TMT toxicity in each region of rat hippocampus. To evaluate the involvement of nitric oxide, we analyzed the effects of aminoguanidine known as a selective inhibitor for inducible nitric oxide synthase on behavioral changes and the hippocampus of rat by TMT toxicity. 6-week-old male Sprague-Dawley rats were administered with a single dose of TMT (8 mg/kg b.w., i.p.) and the control group was similarly administered with distilled water. TMT + aminoguanidine-treated groups were administered with aminoguanidine (10 mg/kg or 100 mg/kg b.w., i.p.) for 3 days prior to TMT injection. The rats were sacrificed 2 days after TMT administration. In the TMT-treated group, a number of cell losses were seen in CA1, CA3 and the dentate gyrus. In the TMT + aminoguanidine-treated group, neuronal death was seen in CA1 and CA3, but reduced in the dentate gyrus compared to the TMT-treated group. Western blot analysis showed that cleaved caspase-3 expression was increased in the TMT-treated group compared to the control group. However, the expression significantly declined in the TMT + aminoguanidine-treated group. The present findings suggest that inducible nitric oxide synthase is involved in neuronal death induced by TMT.