DOI QR코드

DOI QR Code

Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants

  • Li, Rui (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Sheng, Jiping (School of Agricultural Economics and Rural Development, Renmin University of China) ;
  • Shen, Lin (College of Food Science and Nutritional Engineering, China Agricultural University)
  • Received : 2019.11.13
  • Accepted : 2020.03.03
  • Published : 2020.04.01

Abstract

β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.

Keywords

References

  1. Arasimowicz-Jelonek, M. and Floryszak-Wieczorek, J. 2016. Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Front. Plant Sci. 7:252.
  2. Audenaert, K., De Meyer, G. B. and Hofte, M. M. 2002. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128:491-501. https://doi.org/10.1104/pp.010605
  3. Bari, R. and Jones, J. D. G. 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69:473-488. https://doi.org/10.1007/s11103-008-9435-0
  4. Bengtsson, T., Weighill, D., Proux-Wera, E., Levander, F., Resjo, S., Burra, D. D., Moushib, L. I., Hedley, P. E., Liljeroth, E., Jacobson, D., Alexandersson, E. and Andreasson, E. 2014. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15:315. https://doi.org/10.1186/1471-2164-15-315
  5. Chester, K. S. 1933. The problem of acquired physiological immunity in plants. Q. Rev. Biol. 8:129-154. https://doi.org/10.1086/394430
  6. Cohen, Y., Niderman, T., Mosinger, E. and Fluhr, R. 1994. ${\beta}$-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104:59-66. https://doi.org/10.1104/pp.104.1.59
  7. Cohen, Y. R. 2002. ${\beta}$-Aminobutyric acid-induced resistance against plant pathogens. Plant Dis. 86:448-457. https://doi.org/10.1094/PDIS.2002.86.5.448
  8. Cohen, Y., Vaknin, M. and Mauch-Mani, B. 2016. BABAinduced resistance: milestones along a 55-year journey. Phytoparasitica 44:513-538. https://doi.org/10.1007/s12600-016-0546-x
  9. Conrath, U. 2011. Molecular aspects of defence priming. Trends Plant Sci. 16:524-531. https://doi.org/10.1016/j.tplants.2011.06.004
  10. Crawford, N. M. 2006. Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot. 57:471-478. https://doi.org/10.1093/jxb/erj050
  11. Del Rio, L. A., Javier Corpas, F. and Barroso, J. B. 2004. Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783-792. https://doi.org/10.1016/j.phytochem.2004.02.001
  12. Deng, A., Tan, W., He, S., Liu, W., Nan, T., Li, Z., Wang, B. and Li, Q. X. 2008. Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. J. Integr. Plant Biol. 50:1046-1052. https://doi.org/10.1111/j.1744-7909.2008.00715.x
  13. Fan, B., Shen, L., Liu, K., Zhao, D., Yu, M. and Sheng, J. 2008. Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. J. Sci. Food Agric. 88:1238-1244. https://doi.org/10.1002/jsfa.3212
  14. Flors, V., Ton, J., Van Doorn, R., Jakab, G., Garcia-Agustin, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92. https://doi.org/10.1111/j.1365-313X.2007.03397.x
  15. Floryszak-Wieczorek, J., Arasimowicz-Jelonek, M. and Abramowski, D. 2015. BABA-primed defense responses to Phytophthora infestans in the next vegetative progeny of potato. Front. Plant Sci. 6:844.
  16. Floryszak-Wieczorek, J., Arasimowicz-Jelonek, M., Milczarek, G., Janus, L., Pawlak-Sprada, S., Abramowski, D., Deckert, J. and Billert, H. 2012. Nitric oxide-mediated stress imprint in potato as an effect of exposure to a priming agent. Mol. Plant-Microbe Interact. 25:1469-1477. https://doi.org/10.1094/MPMI-02-12-0044-R
  17. Gamir, J., Pastor, V., Cerezo, M. and Flors, V. 2012. Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant Physiol. Biochem. 61:169-179. https://doi.org/10.1016/j.plaphy.2012.10.004
  18. Gill, S. S., Hasanuzzaman, M., Nahar, K., Macovei, A. and Tuteja, N. 2013. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol. Biochem. 63:254-261. https://doi.org/10.1016/j.plaphy.2012.12.001
  19. Hao, G.-P., Xing, Y. and Zhang, J.-H. 2008. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J. Integr. Plant Biol. 50:435-442. https://doi.org/10.1111/j.1744-7909.2008.00637.x
  20. Hong, J. K., Yun, B.-W., Kang, J.-G., Raja, M. U., Kwon, E., Sorhagen, K., Chu, C., Wang, Y. and Loake, G. J. 2008. Nitric oxide function and signalling in plant disease resistance. J. Exp. Bot. 59:147-154. https://doi.org/10.1093/jxb/erm244
  21. Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J.-P. and Mauch-Mani, B. 2001. ${\beta}$-Aminobutyric acidinduced resistance in plants. Eur. J. Plant Pathol. 107:29-37. https://doi.org/10.1023/A:1008730721037
  22. Ji, H., Kyndt, T., He, W., Vanholme, B. and Gheysen, G. 2015. ${\beta}$-Aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense. Mol. Plant-Microbe Interact. 28:519-533. https://doi.org/10.1094/MPMI-09-14-0260-R
  23. Kachroo, P., Venugopal, S. C., Navarre, D. A., Lapchyk, L. and Kachroo, A. 2005. Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol. 139:1717-1735. https://doi.org/10.1104/pp.105.071662
  24. Kovacs, I., Durner, J. and Lindermayr, C. 2015. Crosstalk between nitric oxide and glutathione is required for nonexpressor of pathogenesis-related genes 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. 208:860-872. https://doi.org/10.1111/nph.13502
  25. Li, L. and Steffens, J. C. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239-247. https://doi.org/10.1007/s00425-002-0750-4
  26. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  27. Martinez-Aguilar, K., Ramirez-Carrasco, G., Hernandez-Chavez, J. L., Barraza, A. and Alvarez-Venegas, R. 2016. Use of BABA and INA as activators of a primed state in the common bean (Phaseolus vulgaris L.). Front. Plant Sci. 7:653.
  28. Mukhtar, M. S., Nishimura, M. T. and Dangl, J. 2009. NPR1 in plant defense: it's not over 'til it's turned over. Cell 137:804-806. https://doi.org/10.1016/j.cell.2009.05.010
  29. Noorbakhsh, Z. and Taheri, P. 2016. Nitric oxide: a signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani. Eur. J. Plant Pathol. 144:551-568. https://doi.org/10.1007/s10658-015-0794-5
  30. Perchepied, L., Balague, C., Riou, C., Claudel-Renard, C., Riviere, N., Grezes-Besset, B. and Roby, D. 2010. Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 23:846-860. https://doi.org/10.1094/MPMI-23-7-0846
  31. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S. and Van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316. https://doi.org/10.1038/nchembio.164
  32. Piterkova, J., Hofman, J., Mieslerova, B., Sedlařova, M., Luhova, L., Lebeda, A. and Petřivalsky, M. 2011. Dual role of nitric oxide in Solanum spp.-Oidium neolycopersici interactions. Environ. Exp. Bot. 74:37-44. https://doi.org/10.1016/j.envexpbot.2011.04.016
  33. Ranjan, A., Vadassery, J., Patel, H. K., Pandey, A., Palaparthi, R., Mithofer, A. and Sonti, R. V. 2015. Upregulation of jasmonate biosynthesis and jasmonate-responsive genes in rice leaves in response to a bacterial pathogen mimic. Funct. Integr. Genomics 15:363-373. https://doi.org/10.1007/s10142-014-0426-8
  34. Ruan, J., Li, M., Jin, H., Sun, L., Zhu, Y., Xu, M. and Dong, J. 2015. UV-B irradiation alleviates the deterioration of coldstored mangoes by enhancing endogenous nitric oxide levels. Food Chem. 169:417-423. https://doi.org/10.1016/j.foodchem.2014.08.014
  35. Saavedra, G. M., Sanfuentes, E., Figueroa, P. M. and Figueroa, C. R. 2017. Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of Fragaria chiloensis fruit. Int. J. Mol. Sci. 18:1420. https://doi.org/10.3390/ijms18071420
  36. Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M. and Hayat, S. 2018. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22-38. https://doi.org/10.1016/j.niox.2017.12.005
  37. Shigenaga, A. M. and Argueso, C. T. 2016. No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 56:174-189. https://doi.org/10.1016/j.semcdb.2016.06.005
  38. Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M. M., Pavan, S. and Montemurro, C. 2017. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int. J. Mol. Sci. 18:377. https://doi.org/10.3390/ijms18020377
  39. Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G. and Mauch-Mani, B. 2017. The priming molecule ${\beta}$-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 213:552-559. https://doi.org/10.1111/nph.14298
  40. Tivendale, N. D., Ross, J. J. and Cohen, J. D. 2014. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 19:44-51. https://doi.org/10.1016/j.tplants.2013.09.012
  41. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Metraux, J.-P. and Mauch-Mani, B. 2005. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987-999. https://doi.org/10.1105/tpc.104.029728
  42. Ton, J. and Mauch-Mani, B. 2004. ${\beta}$-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABAdependent priming for callose. Plant J. 38:119-130. https://doi.org/10.1111/j.1365-313X.2004.02028.x
  43. Wang, J., Cao, S., Wang, L., Wang, X., Jin, P. and Zheng, Y. 2018. Effect of ${\beta}$-aminobutyric acid on disease resistance against Rhizopus rot in harvested peaches. Front. Microbiol. 9:1505. https://doi.org/10.3389/fmicb.2018.01505
  44. Wang, X., Xu, F., Wang, J., Jin, P. and Zheng, Y. 2013. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem. 136:400-406. https://doi.org/10.1016/j.foodchem.2012.09.032
  45. Wany, A., Kumari, A. and Gupta, K. J. 2017. Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress. Plant Cell Environ. 40:3002-3017. https://doi.org/10.1111/pce.13061
  46. Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D. and Roberts, M. R. 2012. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol. 193:770-778. https://doi.org/10.1111/j.1469-8137.2011.03987.x
  47. Yim, W. J., Kim, K. Y., Lee, Y. W., Sundaram, S. P., Lee, Y. and Sa, T. M. 2014. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. J. Plant Physiol. 171:1064-1075. https://doi.org/10.1016/j.jplph.2014.03.009
  48. Zhang, S., Wang, L., Zhao, R., Yu, W., Li, R., Li, Y., Sheng, J. and Shen, L. 2018. Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. J. Agric. Food Chem. 66:8949-8956. https://doi.org/10.1021/acs.jafc.8b02191
  49. Zhang, X. and Liu, C.-J. 2015. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol. Plant 8:17-27. https://doi.org/10.1016/j.molp.2014.11.001
  50. Zhang, X., Shen, L., Li, F., Meng, D. and and Sheng, J. 2011. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J. Agric. Food Chem. 59:9351-9357. https://doi.org/10.1021/jf201812r
  51. Zheng, Y., Hong, H., Chen, L., Li, J., Sheng, J. and Shen, L. 2014. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit. J. Agric. Food Chem. 62:1390-1396. https://doi.org/10.1021/jf404870d
  52. Zheng, Y., Shen, L., Yu, M., Fan, B., Zhao, D., Liu, L. and Sheng, J. 2011. Nitric oxide synthase as a postharvest response in pathogen resistance of tomato fruit. Postharvest Biol. Technol. 60:38-46. https://doi.org/10.1016/j.postharvbio.2010.12.003
  53. Zheng, Y., Yang, Y., Liu, C., Chen, L., Sheng, J. and Shen, L. 2015. Inhibition of SlMPK1, SlMPK2, and SlMPK3 disrupts defense signaling pathways and enhances tomato fruit susceptibility to Botrytis cinerea. J. Agric. Food Chem. 63:5509-5517. https://doi.org/10.1021/acs.jafc.5b00437
  54. Zhu, M., Meng, X., Cai, J., Li, G., Dong, T. and Li, Z. 2018. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. 18:83. https://doi.org/10.1186/s12870-018-1299-0
  55. Zimmerli, L., Metraux, J.-P. and Mauch-Mani, B. 2001. ${\beta}$-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517-523. https://doi.org/10.1104/pp.126.2.517