Browse > Article
http://dx.doi.org/10.4110/in.2009.9.2.46

The Role of Nitric Oxide in Mycobacterial Infections  

Yang, Chul-Su (Department of Microbiology and Infection Signaling Network Research Center, College of Medicine, Chungnam National University)
Yuk, Jae-Min (Department of Microbiology and Infection Signaling Network Research Center, College of Medicine, Chungnam National University)
Jo, Eun-Kyeong (Department of Microbiology and Infection Signaling Network Research Center, College of Medicine, Chungnam National University)
Publication Information
IMMUNE NETWORK / v.9, no.2, 2009 , pp. 46-52 More about this Journal
Abstract
Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.
Keywords
nitric oxide; mycobacteria; macrophages; host defense;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL:Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 78;237-246, 1997   DOI   ScienceOn
2 Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR: Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63;736-740, 1995   PUBMED
3 Mayer B, Hemmens B: Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22;477-481, 1997   DOI   PUBMED   ScienceOn
4 Choi HS, Rai PR, Chu HW, Cool C, Chan ED: Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 166; 178-186, 2002   DOI   ScienceOn
5 Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL: Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183;2293-2302, 1996   DOI   ScienceOn
6 Paton NI, Chua YK, Earnest A, Chee CB: Randomized controlled trial of nutritional supplementation in patients with newly diagnosed tuberculosis and wasting. Am J Clin Nutr 80;460-465, 2004   PUBMED
7 Zaki MH, Akuta T, Akaike T: Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J Pharmacol Sci 98;117-129, 2005   DOI   ScienceOn
8 Zaragoza C, Ocampo CJ, Saura M, Bao C, Leppo M, Lafond-Walker A, Thiemann DR, Hruban R, Lowenstein CJ: Inducible nitric oxide synthase protection against coxsackievirus pancreatitis. J Immunol 163;5497-5504, 1999   PUBMED
9 MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, Liew FY: Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. J Gen Virol 79;825-830, 1998   DOI   PUBMED
10 Adler H, Beland JL, Del-Pan NC, Kobzik L, Brewer JP, Martin TR, Rimm IJ: Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 185;1533-1540, 1997   DOI   ScienceOn
11 Flesch IE, Hess JH, Kaufmann SH: NADPH diaphorase staining suggests a transient and localized contribution of nitric oxide to host defence against an intracellular pathogen in situ. Int Immunol 6;1751-1757, 1994   DOI   ScienceOn
12 Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J, Flynn JL: Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med 192;347-358, 2000   DOI   ScienceOn
13 Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z: Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis 78;247-255, 1997   DOI   ScienceOn
14 Facchetti F, Vermi W, Fiorentini S, Chilosi M, Caruso A, Duse M, Notarangelo LD, Badolato R: Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol 154;145-152, 1999   DOI   PUBMED   ScienceOn
15 Peterson PK, Hu S, Anderson WR, Chao CC: Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis 170;457-460, 1994   DOI   PUBMED   ScienceOn
16 Kwon OJ, Kim JH, Kim HC, Suh GY, Park JW, Chung MP, Kim H, Rhee CH: Nitric oxide expression in airway epithelial cells in response to tubercle bacilli stimulation. Respirology 3;119-124, 1998   DOI   ScienceOn
17 Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, Ochoa JB, Ochoa AC: L-arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J Immunol 171;1232-1239, 2003   DOI   PUBMED
18 Roy S, Sharma S, Sharma M, Aggarwal R, Bose M: Induction of nitric oxide release from the human alveolar epithelial cell line A549: an in vitro correlate of innate immune response to Mycobacterium tuberculosis. Immunology 112;471-480, 2004   DOI   ScienceOn
19 Adams LB, Franzblau SG, Vavrin Z, Hibbs JB Jr, Krahenbuhl JL: L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J Immunol 147;1642-1646, 1991   PUBMED
20 Kuo HP, Wang CH, Huang KS, Lin HC, Yu CT, Liu CY, Lu LC: Nitric oxide modulates interleukin-1beta and tumor necrosis factor-alpha synthesis by alveolar macrophages in pulmonary tuberculosis. Am J Respir Crit Care Med 161;192-199, 2000   DOI   PUBMED   ScienceOn
21 Arias M, Rojas M, Zabaleta J, Rodríguez JI, París SC, Barrera LF, Garc$\acute{i}$a LF: Inhibition of virulent Mycobacterium tuberculosis by Bcg(r) and Bcg(s) macrophages correlates with nitric oxide production. J Infect Dis 176;1552-1558, 1997   DOI   ScienceOn
22 Kwon OJ: The role of nitric oxide in the immune response of tuberculosis. J Korean Med Sci 12;481-487, 1997   DOI   PUBMED
23 Bermudez LE: Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 91;277-281, 1993   DOI   ScienceOn
24 MacMicking J, Xie QW, Nathan C: Nitric oxide and macrophage function. Annu Rev Immunol 15;323-350, 1997   DOI   ScienceOn
25 Nathan C, Xie QW: Regulation of biosynthesis of nitric oxide. J Biol Chem 269;13725-13728, 1994   PUBMED
26 Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK: Role of microglia in central nervous system infections. Clin Microbiol Rev 17;942-964, 2004   DOI   ScienceOn
27 van Well GT, Wieland CW, Florquin S, Roord JJ, van der Poll T, van Furth AM: A new murine model to study the pathogenesis of tuberculous meningitis. J Infect Dis 195;694-697, 2007   DOI   ScienceOn
28 Chan J, Xing Y, Magliozzo RS, Bloom BR: Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175;1111-1122, 1992   DOI   ScienceOn
29 Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP: Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 11;809-815, 1998   DOI   ScienceOn
30 Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, Bangham CR, Taylor GP, Herath S, Choi BS, Soler G, Teoh T, Modolell M, M$\ddot{u}$ller I: Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37;935-945, 2007   DOI   ScienceOn
31 Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D: 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66;5314-5321, 1998   PUBMED
32 Lee SC, Dickson DW, Liu W, Brosnan CF: Induction of nitric oxide synthase activity in human astrocytes by interleukin-1beta and interferon-gamma. J Neuroimmunol 46;19-24, 1993   DOI   ScienceOn
33 Olin MR, Armien AG, Cheeran MC, Rock RB, Molitor TW, Peterson PK: Role of nitric oxide in defense of the central nervous system against Mycobacterium tuberculosis. J Infect Dis 198;886-889, 2008   DOI   ScienceOn
34 Umezawa K, Akaike T, Fujii S, Suga M, Setoguchi K, Ozawa A, Maeda H: Induction of nitric oxide synthesis and xanthine oxidase and their roles in the antimicrobial mechanism against Salmonella typhimurium infection in mice. Infect Immun 65;2932-2940, 1997   PUBMED
35 Alam MS, Akaike T, Okamoto S, Kubota T, Yoshitake J, Sawa T, Miyamoto Y, Tamura F, Maeda H: Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun 70;3130-3142, 2002   DOI   ScienceOn
36 Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LD, Wilson AJ, Geller DA, Polak JM: Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun 203;209-218, 1994   DOI   ScienceOn
37 Canthaboo C, Xing D, Wei XQ, Corbel MJ: Investigation of role of nitric oxide in protection from Bordetella pertussis respiratory challenge. Infect Immun 70;679-684, 2002   DOI   ScienceOn
38 Wang CH, Lin HC, Liu CY, Huang KH, Huang TT, Yu CT, Kuo HP: Upregulation of inducible nitric oxide synthase and cytokine secretion in peripheral blood monocytes from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 5;283-291, 2001   PUBMED
39 Flynn JL, Scanga CA, Tanaka KE, Chan J: Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160; 1796-1803, 1998   PUBMED
40 Gazzinelli RT, Eltoum I, Wynn TA, Sher A: Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the down-regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 151;3672-3681, 1993   PUBMED
41 Bolovan-Fritts CA, Spector SA: Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 111;175-182, 2008   DOI   ScienceOn
42 Wu G, Morris SM Jr: Arginine metabolism: nitric oxide and beyond. Biochem J 336;1-17, 1998   DOI   PUBMED
43 Rock RB, Hu S, Deshpande A, Munir S, May BJ, Baker CA, Peterson PK, Kapur V: Transcriptional response of human microglial cells to interferon-$\gamma$. Genes Immun 6;712-719, 2005   DOI   PUBMED
44 Rojas M, Barrera LF, Puzo G, Garcia LF: Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages:role of nitric oxide and mycobacterial products. J Immunol 159;1352-1361, 1997   PUBMED
45 Nathan C, Shiloh MU: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97;8841-8848, 2000   DOI   ScienceOn
46 Croen KD: Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91;2446-2452, 1993   DOI   ScienceOn
47 Denis M: In vivo modulation of atypical mycobacterial infection: adjuvant therapy increases resistance to Mycobacterium avium by enhancing macrophage effector functions. Cell Immunol 134;42-53, 1991   DOI   PUBMED   ScienceOn
48 Zaragoza C, Ocampo CJ, Saura M, McMillan A, Lowenstein CJ: Nitric oxide inhibition of coxsackievirus replication in vitro. J Clin Invest 100;1760-1767, 1997   DOI   ScienceOn
49 Akaike T, Okamoto S, Sawa T, Yoshitake J, Tamura F, Ichimori K, Miyazaki K, Sasamoto K, Maeda H: 8-nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci U S A 100;685-690, 2003   DOI   ScienceOn
50 Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K: Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 65;3644-3647, 1997   PUBMED
51 Gamba G, Cavalieri H, Courreges MC, Massouh EJ, Benencia F: Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J Med Virol 73;313-322, 2004   DOI   ScienceOn
52 Fujii S, Akaike T, Maeda H: Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats. Virology 256;203-212, 1999   DOI   ScienceOn
53 Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS: Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79;1137-1146, 1994   DOI   ScienceOn
54 Jagannath C, Actor JK, Hunter RL Jr: Induction of nitric oxide in human monocytes and monocyte cell lines by Mycobacterium tuberculosis. Nitric Oxide 2;174-186, 1998   DOI   ScienceOn
55 Sharma M, Sharma S, Roy S, Varma S, Bose M: Pulmonary epithelial cells are a source of interferon-gamma in response to Mycobacterium tuberculosis infection. Immunol Cell Biol 85;229-237, 2007   DOI   PUBMED
56 Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S: Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 70;3972-3977, 1996   PUBMED
57 Kreil TR, Eibl MM: Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 219;304-306, 1996   DOI   ScienceOn
58 Doi T, Ando M, Akaike T, Suga M, Sato K, Maeda H: Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect Immun 61; 1980-1989, 1993   PUBMED
59 Moncada S, Palmer RM, Higgs EA: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43;109-142, 1991   PUBMED
60 Zaragoza C, Ocampo C, Saura M, Leppo M, Wei XQ, Quick R, Moncada S, Liew FY, Lowenstein CJ: The role of inducible nitric oxide synthase in the host response to coxsackievirus myocarditis. Proc Natl Acad Sci U S A 95;2469-2474, 1998   DOI   ScienceOn
61 Aston C, Rom WN, Talbot AT, Reibman J: Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Am J Respir Crit Care Med 157;1943-1950, 1998   DOI   PUBMED   ScienceOn
62 Gow AJ, Thom SR, Ischiropoulos H: Nitric oxide and peroxynitrite-mediated pulmonary cell death. Am J Physiol 274;L112-L118, 1998   DOI   PUBMED
63 Zhang M, Xin H, Atherton SS: Murine cytomegalovirus (MCMV) spreads to and replicates in the retina after endotoxin-induced disruption of the blood-retinal barrier of immunosuppressed BALB/c mice. J Neurovirol 11;365-375, 2005   DOI   ScienceOn
64 MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF: Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94;5243-5248, 1997   DOI   ScienceOn
65 Yoshitake J, Akaike T, Akuta T, Tamura F, Ogura T, Esumi H, Maeda H: Nitric oxide as an endogenous mutagen for Sendai virus without antiviral activity. J Virol 78;8709-8719, 2004   DOI   ScienceOn
66 Mazzolla R, Puliti M, Barluzzi R, Neglia R, Bistoni F, Barbolini G, Blasi E: Differential microbial clearance and immunoresponse of Balb/c (Nramp1 susceptible) and DBA2 (Nramp1 resistant) mice intracerebrally infected with Mycobacterium bovis BCG (BCG). FEMS Immunol Med Microbiol 32;149-158, 2002   DOI   ScienceOn
67 Ralph AP, Kelly PM, Anstey NM: L-arginine and vitamin D:novel adjunctive immunotherapies in tuberculosis. Trends Microbiol 16;336-344, 2008   DOI   ScienceOn