• Title/Summary/Keyword: Nile red

Search Result 34, Processing Time 0.022 seconds

Selective Mercuration of 2-Hydroxy Nile Red and Its Application towards Chemodosimetric Hg2+-selective Signaling

  • Lee, Hae-Kyung;Choi, Myung-Gil;Yu, Hyo-Yeon;Ahn, Sang-Doo;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3539-3542
    • /
    • 2010
  • Selective mercuration at the 1,6-positions of 2-hydroxy derivative of Nile Red and its application towards $Hg^{2+}$-selective signaling was investigated. The 2-hydroxy Nile Red exhibited a selective UV-vis absorption and fluorescent signaling behavior towards $Hg^{2+}$ ions over common coexisting physiologically important metal ions in aqueous environment. $^1H$ NMR studies revealed that the mercuration was selectively effected at the 1,6-positions of 2-hydroxy Nile Red, which is quite different from that at the 6,8-positions for the parent Nile Red.

Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed $TiO_2$/Y Zeolites using Visible Light

  • Lee, Jeong-Jin;Kim, Yanghee;Minjoong Yoon
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed TiO$_2$/Y zeolites. Nile Red was successfully adsorbed on TiO$_2$/Y zeolites and the absorption profile is very broad with maxima, ca. 630 nm. The peak is largely red-shifted compared to that observed in hydrocarbon solvents. Furthermore, a broad and largely Stokes shifted emission band as observed around 660 nm. The largely Stokes shifted emission band should be originated from the excited state structural changes. In order to understand the photocatalytic activities of Nile Red-adsorbed TiO$_2$/Y zeolite, the photoreduction of Methyl Orange(5.0$\times$10$^{-5}$ M) was studied using visible light beyond 320 nm. Methyl Orange was effectively reduced by Nile Red-adsorbed TiO$_2$/Y zeolite, indicating the photocatalytic activity of Nile Red-adsorbed TiO$_2$ zeolites was enhanced by about eight times higher than that of TiO$_2$/Y zeolite.

  • PDF

Evaluation of the Feasibility of the Sample Pretreatment and Nile Red Fluorescence Staining Methods for Quantification of Microplastics in Wastewater Samples (하수처리장 유입⋅유출⋅공정수 내 미세플라스틱 분석을 위한 시료 전처리 기법과 Nile Red 형광염색법 적용성 평가)

  • Jae In Kim;Nguyen Thu Huong;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.36-46
    • /
    • 2024
  • Microplastics in water resources have been recognized as a serious problem. The discharge of microplastics from wastewater treatment plants is considered a major contributor to environmental pollution in water resources. However, a reliable analytical method for quantifying microplastics in wastewater treatment plants has not yet been established. This study proposes a reliable, quick, and easy analytical method for quantifying microplastics. For the removal of organic particles, preprocessing steps were applied including oxidation, sonication, washing, and sieving. Nile Red staining was used to visualize microplastics, and quantitative analysis was conducted using fluorescent imaging. The stained microplastics were ultimately quantified through image analysis software. Among the preprocessing steps, sonication and washing stages were particularly effective in efficiently removing interfering substances from wastewater, enhancing the accuracy of the microplastic analysis. Additionally, various solvents (methanol, acetone, and N-hexane) for the Nile Red staining solution were tested. When N-hexane was applied as the solvent, the quantity of stained microplastics was lower compared to methanol and acetone. This suggests that N-hexane has a greater potential of reducing false staining and counting of non-plastic particles. In summary, this research demonstrates a robust method for quantifying microplastics in wastewater treatment plants by employing effective preprocessing steps and optimizing the staining process with Nile Red and N-hexane.

The study on Red device using PBD as a Hole Blocking Layer (PBD를 Hole Blocking Layer로 이용한 적색발광의 EL 소자 제작에 관한 연구)

  • Kang, Min-Woong;Kim, Jong-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.499-501
    • /
    • 2002
  • 본 연구에서는 ETL층으로 널리 알려져 있는 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl) -1.3,4oxadiazole)를 HBL(Hole-blocking layer) 물질로 이용 하고 Nile red를 사용하여 적색 발광의 EL(electroluminescence) 소자를 제작 평가하였다. 일반적인 유기 EL 소자의 구조인 Anode/HTL(Hole Transport Layer)/ETL(Electron Transport Layer)/Cathode로 이루어져 있다. 여기에 HTL과 ETL사이에 HBL를 추가하여 EL 소자의 성능을 향상 시킬 수 있으면, 이러한 구조의 최종 소자를 제작 EML(emitting layer; Nile red)의 두께 및 임계전압을 달리 하여 소자 의 특성을 평가 연구 하였다.

  • PDF

Studies on the Energy Transfer in LED Containing the Layer made of the Blends of Hole Transporting Polymer and Organic Phosphorescent Dye (정공전달고분자와 유기형광염료의 혼합물 박막이 이용된 발광소자의 에너지 전달특성 연구)

  • Kim, Eugene;Jung, Sook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1192-1198
    • /
    • 2004
  • Hole transporting polymer(poly[N-(p-diphenylamine)phenylmethacrylamide], PDPMA) was doped with nile red dye at various concentrations to study the influence of doping on the energy transfer during light emitting processes. Organic LEDs composed of ITO/blend(PDPMA -nile red)/ Alq$_3$/Al as well as thin films of blend(PDPMA -nile red)/ Alq$_3$ were manufactured for investigating photoluminescence, electroluminescence, and current-voltage characteristics. Atomic Force Microscopy was also used to observe surface morphology of the blend films. It was found that such doping. significantly influences the efficiency of the energy transfer from the Alq$_3$ layer to blended layer and the optical/electrical properties could be optimized by choosing the right concentration of the dye molecule. The results also showed a interesting correlation with the morphological aspect, i.e. the optimum luminescence at the concentration with the least surface roughness. When the concentration of nile red was 0.8 wt%, the maximum energy transfer could be achieved.

Selection of Dye Markers for Monitoring Reticulitermes speratus and Identification of Colonies by Heterogeneous Dye-Marking (Reticulitermes Speratus 군체의 모니터링을 위한 염색 시약 선정 및 이종 마킹을 통한 군체 간 식별)

  • IM, Ik-Gyun;HAN, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.514-534
    • /
    • 2021
  • To estimate the territorial size of Reticulitermes speratus, a species of subterranean termites that damages wooden structures in Korea, appropriate dye markers were selected and the diffusion tendency was analyzed. According to the results of the sensitivity assessment using sawdust diet, increase in dye concentration reduced the amount of feed consumption but the dyeing becomes more intense. Except for the Neutral Red 0.5% group, all other concentration groups, including the control group, showed a survival rate of > 85% until week 4. For both, Nile Blue A and Neutral Red dye markers, all concentration conditions > 0.2%, except for the 0.1% concentration, were maintained for 11 weeks, and no sign of transfer effect was found except when the termites were fed with the dye markers. Therefore, it appears that 0.2% of Nile Blue A and Neutral Red is the optimal concentration for monitoring the R. speratus colonies. Additionally, we prepared an indoor 40 m long foraging arena consisting of a colony of 25,000 termites and released individuals stained with 0.2% of Nile Blue A and Neutral Red at both ends to assess the diffusion trends over time. The results showed that it took approximately 7 days for each dyed individual to gradually cover the 40 m distance and mix with each other. These findings reveal that when mark-release-recapture monitoring is conducted on the R. speratus colonies damaging wooden structures, the extent of the colony's activity area could be measured and different colonies could be distinguished from each other.

The Fabrication and Characteristic Analysis of Single-Layer White Organic Light Emitting Devices (단일층 백색유기발광소자의 제작 및 특성분석)

  • Kim, Jung-Yeoun;Kang, Seong-Jong;Roh, Byeong-Gyu;Kang, Myung-Koo;Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.11-16
    • /
    • 2002
  • In this paper, single-layer white organic light emitting device was fabricated on ITO glass substrate using PVK as host, Bu-PBD as electron transport layer, Nile Red, Coumarin 6, TPB as red, green, blue color fluorescent dyes. The red, green, blue organic light emitting devices were fabricated respectively. After the characteristic analysis of each color device, the white organic light emitting device was fabricated with optimized condition of each color device by spin coating method. we obtained white emission CIE coordination of (0.32, 0.34) and luminescence of 785cd/$m^2$ at driving voltage of 20V with condition of PVK(70wt%), Bu-PBD(30wt%), Nile Red(0.015mol%), Coumarin 6(0.04mol%), TPB(3mol%). 

Molecular Interactions of Soaked Nonionic Dye in Ionomer Films (아이오노머 필름에 흡수된 비이온계 염료의 분자간 상호작용에 관한 연구)

  • ;;;;;;Forrest A. Landis;Robert B. Moore
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.671-678
    • /
    • 2001
  • Sodium and zinc salts of poly(ethyaene-co-methacrylic acid) ionomers consist of three phases, i.e. ionic aggregates, amorphous, and crystalline phases. Dye molecules after soaked from the methanol solution are located near the amorphous phase or ionic aggregates within ionomer films. Depending on the location of the molecules in the ionomer film, they are under influence of dispersion forces (ethylene parts), polar forces (acid parts). and ionic dipole (ionic aggregates) interactions. The UV/Vis absorption peak of Nile Red under the dispersion force is found at near 500 nm, for the dye under the polar force effect 525 nm, and 550 and 610 nm for the dyes under $Na^+$ and $Zn^{2+}$ ionization effects, respectively. Since the divalent $Zn^{2+}$ ion has larger ionic dipole than the monovalent $Na^+$ ion, the larger red-shift of the absorption band due to the ionic dipole interaction is observed for $Zn^{2+}$ counter ion.

  • PDF