DOI QR코드

DOI QR Code

Selective Mercuration of 2-Hydroxy Nile Red and Its Application towards Chemodosimetric Hg2+-selective Signaling

  • Received : 2010.09.14
  • Accepted : 2010.09.17
  • Published : 2010.12.20

Abstract

Selective mercuration at the 1,6-positions of 2-hydroxy derivative of Nile Red and its application towards $Hg^{2+}$-selective signaling was investigated. The 2-hydroxy Nile Red exhibited a selective UV-vis absorption and fluorescent signaling behavior towards $Hg^{2+}$ ions over common coexisting physiologically important metal ions in aqueous environment. $^1H$ NMR studies revealed that the mercuration was selectively effected at the 1,6-positions of 2-hydroxy Nile Red, which is quite different from that at the 6,8-positions for the parent Nile Red.

Keywords

References

  1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  2. Kramer, R. Angew. Chem. Int. Ed. 1998, 37, 772. https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<772::AID-ANIE772>3.0.CO;2-Z
  3. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386. https://doi.org/10.1021/ja971221g
  4. Torrado, A.; Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1998, 120, 609. https://doi.org/10.1021/ja973357k
  5. Zheng, Y.; Huo, Q.; Kele, P.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M. Org. Lett. 2001, 3, 3277. https://doi.org/10.1021/ol0101638
  6. Martinez, R.; Espinosa, A.; Tarraga, A.; Molina, P. Org. Lett. 2005, 7, 5869. https://doi.org/10.1021/ol052508i
  7. Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc. 2005, 127, 1612. https://doi.org/10.1021/ja0431051
  8. Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760. https://doi.org/10.1021/ja054855t
  9. Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863. https://doi.org/10.1021/ol0610340
  10. Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. S.; Yoon, Y. J.; Yoon, J. J. Org. Chem. 2006, 71, 2881. https://doi.org/10.1021/jo052542a
  11. Martinez, R.; Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P. Org. Lett. 2006, 8, 3235. https://doi.org/10.1021/ol0610791
  12. Liu, J.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 9838. https://doi.org/10.1021/ja0717358
  13. Zhan, X.-Q.; Qian, Z.-H.; Zheng, H.; Su, B.-Y.; Lan, Z.; Xu, J.-G. Chem. Commun. 2008, 1859.
  14. Lee, M. H.; Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett. 2009, 11, 2101. https://doi.org/10.1021/ol900542y
  15. Choi, M. G.; Kim, Y. H.; Namgoong, J. E.; Chang, S.-K. Chem. Commun. 2009, 3560.
  16. Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L. Analyst 2010, 135, 1411. https://doi.org/10.1039/c000589d
  17. Kim, H. J.; Kim, Y.; Kim, S. J.; Park, S. Y.; Lee, S. Y.; Kim, J. H.; No, K.; Kim, J. S. Bull. Korean Chem. Soc. 2010, 31, 230. https://doi.org/10.5012/bkcs.2010.31.01.230
  18. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270. https://doi.org/10.1021/ja037995g
  19. Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 10. https://doi.org/10.1021/ja055064u
  20. Que, E. L.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 15942. https://doi.org/10.1021/ja065264l
  21. Zheng, H.; Qian, Z. H.; Xu, L.; Yuan, F. F.; Lan, L. D.; Xu, J. G. Org. Lett. 2006, 8, 859. https://doi.org/10.1021/ol0529086
  22. Santra, M.; Ryu, D.; Chatterjee, A.; Ko, S.-K.; Shin, I.; Ahn, K. H. Chem. Commun. 2009, 2115.
  23. Yang, Y.-K.; Ko, S.-K.; Shin, I.; Tae, J. Org. Biomol. Chem. 2009, 7, 4590. https://doi.org/10.1039/b915723a
  24. Jana, A.; Kim, J. S.; Jung, H. S.; Bharadwaj, P. K. Chem. Commun. 2009, 4417.
  25. Lin, W.; Cao, X.; Ding, Y.; Yuan, L.; Long, L. Chem. Commun. 2010, 3529.
  26. Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443. https://doi.org/10.1021/cr068000q
  27. Adams, S. R.; Campbell, R. E.; Gross, L. A.; Martin, B. R.; Walkup, G. K.; Yao, Y.; Llopis, J.; Tsien, R. Y. J. Am. Chem. Soc. 2002, 124, 6063. https://doi.org/10.1021/ja017687n
  28. Adams, S. R.; Tsien, R. Y. Nat. Protoc. 2008, 3, 1527. https://doi.org/10.1038/nprot.2008.144
  29. Nakanishi, J.; Nakajima, T.; Sato, M.; Ozawa, T.; Tohda, K.; Umezawa, Y. Anal. Chem. 2001, 73, 2920. https://doi.org/10.1021/ac001528p
  30. Jose, J.; Burgess, K. Tetrahedron 2006, 62, 11021. https://doi.org/10.1016/j.tet.2006.08.056
  31. Jose, J.; Burgess, K. J. Org. Chem. 2006, 71, 7835. https://doi.org/10.1021/jo061369v
  32. Han, J.; Jose, J.; Mei, E.; Burgess, K. Angew. Chem. Int. Ed. 2007, 46, 1684. https://doi.org/10.1002/anie.200603307
  33. Sun, C.; Yang, J.; Li, L.; Wu, X.; Liu, Y.; Liu, S. J. Chromatogr. B 2004, 803, 173. https://doi.org/10.1016/j.jchromb.2003.12.039
  34. Black, S. L.; Stanley, W. A.; Filipp, F. V.; Bhairo, M.; Verma, A.; Wichmann, O.; Sattler, M.; Wilmanns, M.; Schultz, C. Bioorg. Med. Chem. 2008, 16, 1162. https://doi.org/10.1016/j.bmc.2007.10.080
  35. Diaz, G.; Melis, M.; Batetta, B.; Angius, F.; Falchi, A. M. Micron 2008, 39, 819. https://doi.org/10.1016/j.micron.2008.01.001
  36. Okamoto, A.; Tainaka, K.; Fujiwara, Y. J. Org. Chem. 2006, 71, 3592. https://doi.org/10.1021/jo060168o
  37. Briggs, M. S. J.; Bruce, I.; Miller, J. N.; Moody, C. J.; Simmonds, A. C.; Swann, E. J. Chem. Soc. Perkin Trans. 1 1997, 1051.
  38. Tatay, S.; Gaviña, P.; Coronado, E.; Palomares, E. Org. Lett. 2006, 8, 3857. https://doi.org/10.1021/ol0615580
  39. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414. https://doi.org/10.1021/ac950944k
  40. Hennrich, G.; Walther, W.; Resch-Genger, U.; Sonnenschein, H. Inorg. Chem. 2001, 40, 641. https://doi.org/10.1021/ic000827u
  41. Cho, Y.-S.; Ahn, K. H. Tetrahedron Lett. 2010, 51, 3852. https://doi.org/10.1016/j.tetlet.2010.05.081
  42. Do, J. H.; Kim, H. N.; Yoon, J.; Kim, J. S.; Kim, H.-J. Org. Lett. 2010, 12, 932. https://doi.org/10.1021/ol902860f

Cited by

  1. ChemInform Abstract: Selective Mercuration of 2-Hydroxy Nile Red and Its Application Towards Chemodosimetric Hg2+-Selective Signaling. vol.42, pp.16, 2011, https://doi.org/10.1002/chin.201116197
  2. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media vol.41, pp.12, 2012, https://doi.org/10.1039/c2cs00004k
  3. Luminescent Chemodosimeters for Bioimaging vol.113, pp.1, 2013, https://doi.org/10.1021/cr2004103
  4. Nile Red and Nile Blue: Applications and Syntheses of Structural Analogues vol.22, pp.39, 2016, https://doi.org/10.1002/chem.201601570
  5. Synthesis of red fluorescent dye with acid gas sensitive optical properties and fabrication of a washable and wearable textile sensor vol.91, pp.17, 2010, https://doi.org/10.1177/0040517521994496