• Title/Summary/Keyword: Night time vehicle detection

Search Result 24, Processing Time 0.024 seconds

Night-time Vehicle Detection Method Using Convolutional Neural Network (합성곱 신경망 기반 야간 차량 검출 방법)

  • Park, Woong-Kyu;Choi, Yeongyu;KIM, Hyun-Koo;Choi, Gyu-Sang;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time (차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅)

  • Valijon, Khalilov;Oh, Ryumduck;Kim, Bongkeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

Night-time Vehicle Detection Based On Multi-class SVM (다중-클래스 SVM 기반 야간 차량 검출)

  • Lim, Hyojin;Lee, Heeyong;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Night-Time Blind Spot Vehicle Detection Using Visual Property of Head-Lamp (전조등의 시각적 특성을 이용한 야간 사각 지대 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.311-317
    • /
    • 2011
  • The blind spot is an area where drivers visibility does not reach. When drivers change a lane to adjacent lane, they need to give an attention because of the blind spot. If drivers try to change lane without notice of vehicle approaching in the blind spot, it causes a reason to have a car accident. This paper proposes a night-time blind spot vehicle detection using cameras. At nighttime, head-lights are used as characteristics to detect vehicles. Candidates of headlight are selected by high luminance feature and then shape filter and kalman filter are employed to remove other noisy blobs having similar luminance to head-lights. In addition, vehicle position is estimated from detected head-light, using virtual center line represented by approximated the first order linear equation. Experiments show that proposed method has relatively high detection porformance in clear weather independent to the road types, but has not sufficient performance in rainy weather because of various ground reflectors.

Real-time Lane Violation Detection System using Feature Tracking (특징점 추적을 이용한 실시간 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.201-212
    • /
    • 2011
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorism in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. The feature is extracted from the morphological gradient image, which results in constructing robust detection system against shadows, weather conditions, head lights and illumination conditions without distinction day and night. The system shows excellent performance for the data captured at day time, night time, and rainy night time as much as 99.49% for positive recognition ratio and 0.51% for error ratio. Also the system is so fast as much as 91.34 frames per second in average that it may be possible for real-time processing.

Fast Lamp Pairing-based Vehicle Detection Robust to Atypical and Turn Signal Lamps at Night

  • Jeong, Kyeong Min;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • Automatic vehicle detection is a very important function for autonomous vehicles. Conventional vehicle detection approaches are based on visible-light images obtained from cameras mounted on a vehicle in the daytime. However, unlike daytime, a visible-light image is generally dark at night, and the contrast is low, which makes it difficult to recognize a vehicle. As a feature point that can be used even in the low light conditions of nighttime, the rear lamp is virtually unique. However, conventional rear lamp-based detection methods seldom cope with atypical lamps, such as LED lamps, or flashing turn signals. In this paper, we detect atypical lamps by blurring the lamp area with a low pass filter (LPF) to make out the lamp shape. We also propose to detect flickering of the turn signal lamp in a manner such that the lamp area is vertically projected, and the maximum difference of two paired lamps is examined. Experimental results show that the proposed algorithm has a higher F-measure value of 0.24 than the conventional lamp pairing-based detection methods, on average. In addition, the proposed algorithm shows a fast processing time of 6.4 ms per frame, which verifies real-time performance of the proposed algorithm.

Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor (교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법)

  • Choi, Changhwan;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.

Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System (적응형 헤드 램프 컨트롤을 위한 야간 차량 인식)

  • Kim, Hyun-Koo;Jung, Ho-Youl;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

Road marking classification method based on intensity of 2D Laser Scanner (신호세기를 이용한 2차원 레이저 스캐너 기반 노면표시 분류 기법)

  • Park, Seong-Hyeon;Choi, Jeong-hee;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.