• 제목/요약/키워드: Night time vehicle detection

검색결과 24건 처리시간 0.02초

합성곱 신경망 기반 야간 차량 검출 방법 (Night-time Vehicle Detection Method Using Convolutional Neural Network)

  • 박웅규;최연규;김현구;최규상;정호열
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅 (Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time)

  • 칼릴로브 발리존;오염덕;김봉근
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

다중-클래스 SVM 기반 야간 차량 검출 (Night-time Vehicle Detection Based On Multi-class SVM)

  • 임효진;이희용;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법 (Night Time Leading Vehicle Detection Using Statistical Feature Based SVM)

  • 정정은;김현구;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제7권4호
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

전조등의 시각적 특성을 이용한 야간 사각 지대 차량 검출 기법 (Night-Time Blind Spot Vehicle Detection Using Visual Property of Head-Lamp)

  • 정정은;김현구;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제6권5호
    • /
    • pp.311-317
    • /
    • 2011
  • The blind spot is an area where drivers visibility does not reach. When drivers change a lane to adjacent lane, they need to give an attention because of the blind spot. If drivers try to change lane without notice of vehicle approaching in the blind spot, it causes a reason to have a car accident. This paper proposes a night-time blind spot vehicle detection using cameras. At nighttime, head-lights are used as characteristics to detect vehicles. Candidates of headlight are selected by high luminance feature and then shape filter and kalman filter are employed to remove other noisy blobs having similar luminance to head-lights. In addition, vehicle position is estimated from detected head-light, using virtual center line represented by approximated the first order linear equation. Experiments show that proposed method has relatively high detection porformance in clear weather independent to the road types, but has not sufficient performance in rainy weather because of various ground reflectors.

특징점 추적을 이용한 실시간 끼어들기 위반차량 검지 시스템 (Real-time Lane Violation Detection System using Feature Tracking)

  • 이희신;정성환;이준환
    • 정보처리학회논문지B
    • /
    • 제18B권4호
    • /
    • pp.201-212
    • /
    • 2011
  • 본 논문에서는 특징점 추적을 이용한 끼어들기 위반차량 검지 시스템을 제안한다. 제안된 끼어들기 위반차량 검지 시스템의 전체적인 알고리즘은 영상 변환 및 전처리, 특징 추출, 추적대상 차량의 특징점 등록 및 추적, 끼어들기 위반차량 검지 등의 단계로 구성된다. 특히 형태학적 기울기 영상을 이용하여 특징점을 추출하므로 써 주간 및 야간 영상에 대해 동일한 알고리즘을 적용하여 그림자, 기상 조건, 차량 전조등 및 조명 등에 강인한 영상 검지 시스템을 구성 한다. 제안한 시스템을 끼어들기 금지구간에서 주간, 야간, 비 오는 날 야간에 취득한 영상을 사용하여 실험한 결과 정인식률 99.49%와 오류율 0.51%를 보였다. 또한 실시간처리에 문제가 없는 평균 91.34frame/s의 빠른 처리속도를 나타냈다.

Fast Lamp Pairing-based Vehicle Detection Robust to Atypical and Turn Signal Lamps at Night

  • Jeong, Kyeong Min;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.269-275
    • /
    • 2017
  • Automatic vehicle detection is a very important function for autonomous vehicles. Conventional vehicle detection approaches are based on visible-light images obtained from cameras mounted on a vehicle in the daytime. However, unlike daytime, a visible-light image is generally dark at night, and the contrast is low, which makes it difficult to recognize a vehicle. As a feature point that can be used even in the low light conditions of nighttime, the rear lamp is virtually unique. However, conventional rear lamp-based detection methods seldom cope with atypical lamps, such as LED lamps, or flashing turn signals. In this paper, we detect atypical lamps by blurring the lamp area with a low pass filter (LPF) to make out the lamp shape. We also propose to detect flickering of the turn signal lamp in a manner such that the lamp area is vertically projected, and the maximum difference of two paired lamps is examined. Experimental results show that the proposed algorithm has a higher F-measure value of 0.24 than the conventional lamp pairing-based detection methods, on average. In addition, the proposed algorithm shows a fast processing time of 6.4 ms per frame, which verifies real-time performance of the proposed algorithm.

교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법 (Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor)

  • 최창환;유국열;박용완
    • 대한임베디드공학회논문지
    • /
    • 제10권2호
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.

적응형 헤드 램프 컨트롤을 위한 야간 차량 인식 (Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System)

  • 김현구;정호열;박주현
    • 대한임베디드공학회논문지
    • /
    • 제6권1호
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

신호세기를 이용한 2차원 레이저 스캐너 기반 노면표시 분류 기법 (Road marking classification method based on intensity of 2D Laser Scanner)

  • 박성현;최정희;박용완
    • 대한임베디드공학회논문지
    • /
    • 제11권5호
    • /
    • pp.313-323
    • /
    • 2016
  • With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.