• Title/Summary/Keyword: Nicotiana

Search Result 533, Processing Time 0.035 seconds

Expression of prune dwarf Ilarvirus coat protein sequences in Nicotiana benthamiana plants interferes with PDV systemic proliferation

  • Raquel, Helena;Lourenco, Tiago;Moita, Catarina;Oliveira, M. Margarida
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • Prune dwarf virus (PDV) is an Ilarvirus systemically infecting almond trees and other Prunus species and spreading through pollen, among other means. We have studied strategies based on coat protein (cp) gene to block PDV replication in host plant cells. A Portuguese isolate of PDV was obtained from infected almond leaves and used to produce the cDNA of the cp gene. Various constructs were prepared based on this sequence, aiming for the transgenic expression of the original or modified PDV coat protein (cpPDVSense and cpPDVMutated) or for the expression of cpPDV RNA (cpPDVAntisense and cpPDVwithout start codon). All constructs were tested in a PDV host model, Nicotiana benthamiana, and extensive molecular characterization and controlled infections were performed on transformants and their progenies. Transgenic plants expressing the coat protein RNA were able to block the proliferation of a PDV isolate sharing only 91% homology with the isolate used for cpPDV cloning, as evaluated by DAS-ELISA on newly developed leaves. With cp expression, the blockage of PDV proliferation in newly developed leaves was only achieved with the construct cpPDV Mutated, where the coat protein has a substitution in the 14th aa residue, with arginine replaced by alanine. This result points to a possible role of the mutated amino acid in the virus ability to replicate and proliferate. This work reveals the possibility of achieving protection against PDV through either coat protein RNA or mutated cp sequence.

Tomato spotted wilt virus Isolates Giving Different Infection in Commercial Capsicum annuum Cultivars

  • Chung, Bong-Nam;Choi, Hak-Soon;Yang, Eun-Young;Cho, Jeom-Deog;Cho, In-Sook;Choi, Gug-Sun;Choi, Seung-Kook
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.87-92
    • /
    • 2012
  • $Tomato$ $spotted$ $wilt$ $virus$ (TSWV)-infected $Capsicum$ $annuum$ plants were collected from open fields during June to July in 2010. The TSWV isolates were designated as Gneung, Ghang-Kjj, Gchang-Njc, Ghae, and Pap. The nucleotide sequence of the nucleocapsid protein (N) and movement protein (NSm) of the five isolates was determined. The pathogenicity of the five isolates was determined on 14 $C.$ $annuum$ cultivars two times by using mechanical inoculation. The five isolates induced different response: Both Gneung and Gchang-Kjj did not infect any of the cultivars in the 2nd trial, while Gchang-Njc, Ghae and Pap infected 11, 6 and 13 of 14 cultivars, respectively. The five isolates also were tested on $Solanum$ $lycopersicum$ breeding line TGC09-71 and three $Nicotiana$ species. $S.$ $lycopersicum$ showed a similar response to the five isolates as did $C.$ $annuum$. Both Gchang-Njc and Ghae infected systemically all three $Nicotiana$ species tested. While both Pap and Gneung did not infect any of the $Nicotiana$ species tested. In conclusion, five TSWV isolates induced different infection spectra in $C.$ $annuum$ cultivars, $Nicotiana$ species and an $S.$ $lycopersicum$ breeding line. Amino acid sequence analysis of the NSm gene could not support or explain the different infection spectra of the five isolates. This study indicated that various isolates must be used as virus inocula for evaluation of $C.$ $annuum$ and $S.$ $lycopersicum$ cultivars in breeding programs for TSWV resistance.

Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene (오이모자이크바이러스 2b 유전자 발현 담배의 형태 및 전사체 분석)

  • Sohn, Seong-Han;Kim, Yoon-Hee;Ahn, Yul-Kyun;Kim, Do-Sun;Won, So-Yoon;Kim, Jung-Sun;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2015
  • Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS). To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG) comparing with wild-type. Eight lines of transgenic plants ($T_0$) were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

Selection of Cadmium Resistant Cell Line from Calli of Nicotiana tabacum cv. BY4 (담배(Nicotiana tabacum L. cv. BY4)캘러스로부터 카드뮴 저항성 세포주의 선발)

  • 오승철;소웅영;조덕이;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.6
    • /
    • pp.361-367
    • /
    • 1997
  • This study was carried out to select cadmium resistant cell lines from leaf-derived calli of diploid and haploid of Nicotiana tabacum cv. BY4, for understanding adaptation mechanism of plants in cadmium contaminated environment. suspended cell clumps were plated onto selection medium containing 0 to 2,000 $\mu$M cadmium. Cadmium resistant colonies were formed on the selection medium after 3 or 4 weeks of culture. The minimum inhibition concentration (MIC) of cadmium on colony formation were 300 $\mu$M in diploid and 200 $\mu$M in haploid plants, respectively. In order to test the resistance to cadmium, selected cell line on MIC were transferred to medium containing high concentration of cadmium. The selected cell lines, especially haploid cell line, were resistant an the high concentration of cadmium. And dry weight, ash weight, and cadmium contents of cell were increased. These results indicated that the selected cell lines showed higher resistance of cadmium than control cells, and haploid plant is more resistant than diploid plant on medium with cadmium.

  • PDF

Cytological Study of the Introduction of Agrobacterium tumefaciens Spheroplasts into Nicotiana tabacum Protoplasts (Agrobacterium tumefaciens Spheroplast의 연초엽육 Protoplast내 도입에 관한 세포학적 연구)

  • Kim, Jung-Hye;Koo, Yong-Bum;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.2 no.1
    • /
    • pp.175-181
    • /
    • 1985
  • Agrobacterium tumefaciens induces cancerous growths called crown galls at wound sites on dicotyledonous plants. A large plasmid called Ti plasmid is responsible for virulence. Upon tumor induction, part of the plasmid, termed T-DNA, becomes integrated into plant genome and its genetic sequences are expressed. These properties allow Ti plasmids to be used as gene vectors in plants. Several in vitro methods for the transfer of Ti plasmid into plant cell have been developed. One of them is the treatment of bacterial spheroplasts and plant protoplasts mixture with polyethylene glycol that is generally used as fusogen in cell-to-cell fusion. Several workers investigated the interaction of bacterial spheroplasts with plant protoplasts in the presence of polyethylene glycol and suggested that the interaction is not fusion but endocytosis. In this report we observed the interaction of Agrobacterium tumefaciens spheroplasts with Nicotiana tabacum protoplasts by electron microscope. Agrobacterium tumefaciens spheroplasts and Nicotiana tabacum protoplasts were prepared and mixed in the presence of polyethylene glycol and high pH-high $Ca^{2+}$ buffer. Then the interaction of the spheroplasts with the protoplasts was examined by transmission electron microscope. After the treatment of polyethylene glycol the spheroplasts adhered to the surface of the protoplasts and then they were engulfed by the protoplasts. After the high pH-high $Ca^{2+}$ buffer treatment the engulfed spheroplasts lost their cell integrity. No fusion process was observed. Thus all these observations suggest that the introduction process of Agrobacterium tumefaciens spheroplasts into Nicotiana tabacum protoplasts with the aid of polyethylene glycol is endocytosis.

  • PDF

p-Fluorophenylalanine Resistant Cell Line Selection and Enzyme Activity from Diploid and Hapliod calli of Nicotiana tabacum cv. BY4 (담배 (Nicotiana tabacum cv. BY4)의 캘러스로부터 p-Fluorophenylalanine 저항성 캘러스 선발 및 효소활성도 측정)

  • 오승철;소웅영;조덕이;오승용;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2001
  • Calli were induced on MS medium supplemented with 0.5 mg/L 2,4-D by using the leaf explants of haploid which were derived from the diploid and haploid of Nicotiana tabacum cv BY4. These calli were subcultured on MS medium with the combination of 2.0 mg/L 2,4-D, 1.0 mg/L kinetin and 0.1 mg/L BAP. Cell propagation of diploid plants were good in a combination of 2.0 mg/L 2,4-D, 0.1mg/L BAP in vitro conditions, suspension cultures were conducted in equal condition. Homogenized suspension cultured cells were smeared 2.0 mL each on MS medium with 0~100 $\mu$M PFP, to select the resistant colony to PFP, and were examined after 10d, 20d and 30d. Measurment of fresh weight of cells after 30d of culture shows that with more concentration of PFP in medium the fresh weight of the cells decreased. In case of diploid, selected callus was the highest in vitro treated with 5 $\mu$M PFP. It was higher than control until 100 $\mu$M PFP. The active degree of catalase was the highest in vitro with 5 $\mu$M PFP but the lowest in vitro with 10 $\mu$M PFP on the other hand, in case of haploid plant, the active degree of peroxidase and catalase was the highest in vitro treated with 50 $\mu$M PFP. It's sure that enzyme active degree of between diploid and haploid had big differences.

  • PDF

Virus Resistant and Susceptible Transgenic Nicotiana benthamiana Plants Expressing Coat Protein Gene of Zucchini green mottle mosaic virus for LMO Safety Assessment

  • Kim, Min-Jea;Choi, Sun-Hee;Kim, Tae-Sung;Park, Min-Hye;Lim, Hee-Rae;Oh, Kyung-Hee;Kim, Tae-San;Lee, Min-Hyo;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • Transgenic Nicotiana benthamiana plants harboring coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for virus-resistant screening and complementation analysis of related viruses for environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N.benthamiana was performed by using Agrobacterium-mediated method and the pZGC-PPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and virus-susceptible N.benthamiana lines, were obtained by screening of challenging homologous virus for Tl generations. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.