DOI QR코드

DOI QR Code

오이모자이크바이러스 2b 유전자 발현 담배의 형태 및 전사체 분석

Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene

  • 손성한 (농촌진흥청 국립농업과학원) ;
  • 김윤희 (농촌진흥청 국립농업과학원) ;
  • 안율균 (농촌진흥청 국립원예특작과학원) ;
  • 김도선 (농촌진흥청 국립원예특작과학원) ;
  • 원소윤 (농촌진흥청 국립농업과학원) ;
  • 김정선 (농촌진흥청 국립농업과학원) ;
  • 최홍수 (농촌진흥청 국립농업과학원)
  • Sohn, Seong-Han (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yoon-Hee (National Academy of Agricultural Science, Rural Development Administration) ;
  • Ahn, Yul-Kyun (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Do-Sun (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Won, So-Yoon (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jung-Sun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Hong-Soo (National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2015.06.22
  • 심사 : 2015.07.23
  • 발행 : 2015.09.30

초록

오이모자이크바이러스 2b 유전자는 전사후유전자침묵(PTGS)을 억제하는 기능을 가진 억제인자이다. 식물체내 2b 유전자 기능을 분석하기 위해 Nicotiana benthamiana에 형질전환하였고 형태변화와 유전자 발현변화를 분석하였다. 8계통의 2b 유전자 형질전환체 중에서 1개의 유전자가 T0 개체에 삽입된 계통은 3개였다. 2b 유전자 형질전환체는 일반적으로 종자 확보가 어려웠지만 다행히 일부 배수화되지 않은 계통(hemizygote)에서는 소량의 종자가 확보되어 계통유지가 가능하였다. 고정계통의 전사체를 해독하여 대조와 비교분석한 바, 2b 유전 자는 특정유전자의 발현을 선택적으로 증대시키는 것이 아닌 다수의 유전자를 비선택적으로 발현을 증대시키는 것으로 판단되었다. 이러한 결과는 2b 유전자가 세포질에 존재하는 다양한 RNA의 대사중 분해를 억제하여 세포질내 RNA가 축적되고 이로 인해 단백질 합성도 증대되어 정상적 생장발달이 저해되고 기형적인 형태의 식물체가 되는 요인으로 판단된다.

Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS). To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG) comparing with wild-type. Eight lines of transgenic plants ($T_0$) were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

키워드

참고문헌

  1. Choi, M. S., Yoon, I.-S., Rhee, Y., Choi, S. K., Lim, S.-H., Won, S.-Y., Lee, Y.-H., Choi, H.-S., Lee, S.-C., Kim, K.-H., Lomonossoff, G. and Sohn, S.-H. 2008. The effect of Cucumber mosaic virus 2b protein to transient expression and transgene silencing mediated by agro-infiltration. Plant Pathol. J. 24: 296-304. https://doi.org/10.5423/PPJ.2008.24.3.296
  2. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M. and Robles, M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  3. Ding, S. W., Anderson, B. J., Haase, H. R. and Symons, R. H. 1994. New overlapping gene encoded by the cucumber mosaic virus genome. Virology 198: 593-601. https://doi.org/10.1006/viro.1994.1071
  4. Ding, S. W., Li, W. X. and Symons, R. H. 1995. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J. 14: 5762-5772.
  5. Dunoyer, P., Himber, C. and Voinnet, O. 2005. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37: 1356-1360. https://doi.org/10.1038/ng1675
  6. Eamens, A., Wang, M.-B., Smith, N. A. and Waterhouse, P. M. 2008. RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol. 147: 456-468. https://doi.org/10.1104/pp.108.117275
  7. Frizzi, A. and Huang, S. 2010. Tapping RNA silencing pathways for plant Biotechnology. Plant Biotech. J. 8: 655-677. https://doi.org/10.1111/j.1467-7652.2010.00505.x
  8. Goto, K., Kobori, T., Kosaka, Y., Natsuaki, T. and Masuta, C. 2007. Characterization of silencing suppressor 2b of Cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol. 48: 1050-1060. https://doi.org/10.1093/pcp/pcm074
  9. Jada, B., Soitamo, A. J. and Lehto, K. 2013. Organ-specific alterations in tobacco transcriptome caused by the PVX-derived P25 silencing suppressor transgene. BMC Plant Biol. 13: 8. https://doi.org/10.1186/1471-2229-13-8
  10. Llave, C., Kasschau, K. D. and Carrington, J. C. 2000. Virus-encoded suppressor of post-transcriptional gene silencing targets a maintenance step in the silencing pathway. PNAS USA 97: 13401-13406. https://doi.org/10.1073/pnas.230334397
  11. Mallory, A. C., Ely, L., Smith, T. H., Marathe, R., Anandalakshmi, R., Fagard, M., Vaucheret, H., Pruss, G., Bowman, L. and Vance, V. B. 2001. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13: 571-584. https://doi.org/10.1105/tpc.13.3.571
  12. Jung, H. J., Park, S. J. and Kang, H. 2013. Regulation of RNA metabolism in plant development and stress responses. J. Plant Biol. 56: 123-129. https://doi.org/10.1007/s12374-013-0906-8
  13. Muruganantham, M., Moskovitz, Y., Haviv, S., Horesh, T., Fenigstein, A., Preez, J., Stephan, D., Burger, J. T. and Mawassi, M. 2009. Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J. Virol. Methods 155: 167-174. https://doi.org/10.1016/j.jviromet.2008.10.010
  14. R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  15. Roth, B. M., Pruss, G. J. and Vance, V. B. 2004. Plant viral suppressors of RNA silencing. Virus Res. 102: 97-108. https://doi.org/10.1016/j.virusres.2004.01.020
  16. Sohn, S.-H., Huh, S. M., Kim, K.-H., Park, J. W. and Lomonossoff, G. 2011a. Effect of Rice stripe virus NS3 on transient gene expression and transgene co-silencing. Plant Pathol. J. 27: 310-314. https://doi.org/10.5423/PPJ.2011.27.4.310
  17. Sohn, S.-H., Choi, M. S., Kim, K.-H. and Lomonossoff, G. 2011b. The epigenetic phenotypes in transgenic Nicotiana benthamiana for CaMV 35S-GFP are mediated by spontaneous transgene silencing. Plant Biotech. Rep. 5: 273-281. https://doi.org/10.1007/s11816-011-0182-3
  18. Sohn, S.-H., Frost, J., Kim, Y.-H., Choi, S.-K., Lee, Y., Seo, M.-S., Lim, S.-H., Choi, Y., Kim, K.-H. and Lomonossoff, G. 2014. Cell-autonomouslike silencing of GFP-partitioned transgenic Nicotiana benthamiana. J. Exp. Bot. 65: 4271-4283. https://doi.org/10.1093/jxb/eru200
  19. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L. A., Rhee, S. Y. and Stitt, M. 2004. MAPMAN: a userdriven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37: 914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x
  20. Vargason, J. M., Szittya, G., Burgyan, J. and Tanaka-Hall, T. M. 2003. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115: 799-811. https://doi.org/10.1016/S0092-8674(03)00984-X
  21. Ye, K., Malinina, L. and Patel, D. 2003. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426: 874-878. https://doi.org/10.1038/nature02213
  22. Zhang, X., Yuan, Y.-R., Pei, Y., Lin, S.-S., Tuschl, T., Patel, D. J. and Chua, N. H. 2006. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20: 3255-3268. https://doi.org/10.1101/gad.1495506