• Title/Summary/Keyword: Nickel silicides

Search Result 47, Processing Time 0.025 seconds

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

Effect of Co substitution on NiSi and $NiSi_2$: ab initio calculation (NiSi와 $NiSi_2$에 대한 Co 치환의 영향: ab initio 계산)

  • Kim, Yeong-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.13-17
    • /
    • 2007
  • Effect of Co substitution on crystal structures of two nickel silicides, NiSi and $NiSi_2$, is investigated by using an ab initio calculation. Relaxed NiSi and $NiSi_2$ structures are calculated and the calculated lattice parameters are in good agreement with experimentally determined lattice parameters within about 2%. A Co atom substitutes a Ni and Si site, respectively, to evaluate the preferable site between them. Co prefers Ni site to Si site in both NiSi and $NiSi_2$. The calculated total energy also indicates that the Co substitution to Ni site stabilizes both the NiSi and $NiSi_2$ structures. Co also prefers Ni site in $NiSi_2$ to that in NiSi, indicating that $NiSi_2$ becomes more stable than NiSi with Co substitution. As Co addition to NiSi improves its thermal stability experimentally, this indicates that the energy barrier between the two phases is high enough to prevent the phase transformation from NiSi to $NiSi_2$ up to high temperature.

  • PDF

Property of Nickel Silicides with 10 nm-thick Ni/Amorphous Silicon Layers using Low Temperature Process (10 nm-Ni 층과 비정질 실리콘층으로 제조된 저온공정 나노급 니켈실리사이드의 물성 변화)

  • Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.322-329
    • /
    • 2009
  • 60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.

Ni Silicide Formation and the Crystalline Silicion Film Growth

  • Kim, Jun-Dong;Ji, Sang-Won;Park, Yun-Chang;Lee, Jeong-Ho;Han, Chang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.219-219
    • /
    • 2010
  • Silicides have been commonly used in the Si technology due to the compatibility with Si. Recently the silicide has been applied in solar cells [1] and nanoscale interconnects [2]. The modulation of Ni silicide phase is an important issue to satisfy the needs. The excellent electric-conductive nickel monosilicide (NiSi) nanowire has proven the low resistive nanoscale interconnects. Otherwise the Ni disilicide (NiSi2) provides a template to grow a crystalline Si film above it by the little lattice mismatch of 0.4% between Si and NiSi2. We present the formation of Ni silicide phases performed by the single deposition and the co-deposition methods. The co-deposition of Ni and Si provides a stable Ni silicide phase at a reduced processing temperature comparing to the single deposition method. It also discusses the Schottky contact formation between the Ni silicide and the grown crystalline Si film for the solar cell application.

  • PDF

Fabrication of a Au/Ni/Ti/3C-SiC Schottky Diode and its Characteristics for High-voltages (고내압용 Au/Ni/Ti/3C-SiC 쇼트키 다이오드의 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.261-265
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a Au/Ni/Ti/3C-SiC Schottky diode with field plate (FP) edge termination. The Schottky contacts were annealed for 30 min at temperatures ranging from 0 to $800^{\circ}C$. At annealing temperature of $600^{\circ}C$, it showed an inhomogeneous Schottky barrier and had the best electrical characteristics. However, the annealing of $800^{\circ}C$ replaced it with ohmic behaviors because of the formation of many different types of nickel silicides. The fabricated Schottky diode had a breakdown voltage of 200 V, Schottky barrier height of 1.19 eV and worked normally even at $200^{\circ}C$.

Phase Distribution and Interface Chemistry by Solid State SiC/Ni Reaction

  • Lim, Chang-Sung;Shim, Kwang-Bo;Shin, Dong-Woo;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The phase distribution and interface chemistry by the solid-state reaction between SiC and nickel were studied at temperatures between $550 \;and\; 1250^{\circ}C$ for 0.5-100 h. The reaction with the formation of silicides and carbon was first observed above $650^{\circ}C$. At $750^{\circ}C$, as the reaction proceeded, the initially, formed $Ni_3Si_2$ layer was converted to $Ni_2$Si. The thin nickel film reacted completely with SiC after annealing at $950^{\circ}C$ for 2 h. The thermodynamically stable $Ni_2$Si is the only obsrved silicide in the reaction zone up to $1050^{\circ}C$. The formation of $Ni_2$Si layers with carbon precipitates alternated periodically with the carbon free layers. At temperatures between $950^{\circ}C$ and $1050^{\circ}C$, the typical layer sequences in the reaction zone is determined by quantitative microanalysis to be $SiC/Ni_2$$Si+C/Ni_2$$Si/Ni_2$$Si+C/…Ni_2$Si/Ni(Si)/Ni. The mechanism of the periodic band structure formation with the carbon precipitation behaviour was discussed in terms of reaction kinetics and thermodynamic considerations. The reaction kinetics is proposed to estimate the effective reaction constant from the parabolic growth of the reaction zone.

  • PDF

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Characteristics of Ni/Co Composite Silicides for Poly-silicon Gates (게이트를 상정한 니켈 코발트 복합실리사이드 박막의 물성연구)

  • Kim, Sang-Yeob;Jung, Young-Soon;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.149-154
    • /
    • 2005
  • We fabricated Ni/Co(or Co/Ni) composite silicide layers on the non-patterned wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\~}1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the poly silicon inversion due to fast metal diffusion lead to decrease silicide thickness. Our results imply that we should consider the serious inversion and fast transformation in designing and process f3r the nano-height fully cobalt nickel composite silicide gates.

  • PDF

Simultaneous Synthesis and Densification of NiSi2 and NiSi2-20vol.%Nb Composite by Field-Activated and Pressure-Assisted Combustion (가압통전 활성연소에 의한 치밀한 NiSi2와 NiSi2-20vol.%Nb 복합재료 제조)

  • Kim, H.C.;Shon, I.J.;Park, C.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • A method to simultaneously synthesize and consolidate the silicide $NiSi_2$ and the composite $NiSi_2$-20vol.%Nb from powders of Ni, Si, and Nb was investigated. Combustion synthesis was carried out under the combined effect of an electric field and mechanical pressure. The final density of the products increased nearly linearly with the applied pressure. Highly dense $NiSi_2$ and $NiSi_2$-20vol.%Nb with relative densities of up to 97% were produced under the simultaneous application of a 60MPa pressure and a 3000A current on the reactant powders. The respective Vickers microhardness values for these materials were 6.0 and 5.8 GPa. From indentation crack measurements, the fracture toughness values for $NiSi_2$ and $NiSi_2$-20vol.%Nb were calculated to be 3.3 and 4.7 $MPa{\cdot}m^{1/2}$, respectively.

  • PDF

Microstructure Evolution and Properties of Silicides Prepared by dc-sputtering (스퍼터링으로 제조된 니켈실리사이드의 미세구조 및 물성 연구)

  • An, Yeong-Suk;Song, O-Seong;Lee, Jin-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.601-606
    • /
    • 2000
  • Nickel mono-silicide(NiSi) shows no increase of resistivity as the line width decreases below 0.15$\mu\textrm{m}$. Furthermore, thin silicide can be made easily and restrain the redistribution of dopants, because NiSi in created through the reaction of one nickel atom and one silicon atom. Therefore, we investigated the deposition condition of Ni films, heat treatment condition and basic properties of NiSi films which are expected to be employed for sub-0.15$\mu\textrm{m}$ class devices. The nickel silicide film was deposited on the Si wafer by using a dc-magnetron sputter, then annealed at the temperature range of $150~1000^{\circ}C$. Surface roughness of each specimen was measured by using a SPM (scanning probe microscope). Microstructure and qualitative composition analysis were executed by a TEM-EDS(transmission electron microscope-energy dispersive x-ray spectroscope). Electrical properties of the materials at each annealing temperature were measured by a four-point probe. As the results of our study, we may conclude that; 1. SPM can be employed as a non-destructive process to monitor NiSi/NiSi$_2$ transformation. 2. For annealing temperature over $800^{\circ}C$, oxygen pressure $Po_2$ should be kept below $1.5{\times}10^{-11}torr$ to avoid oxidation of residual Ni. 3. NiSi to $NiSi_2$ transformation temperature in our study was $700^{\circ}C$ from the four-point probe measurement.

  • PDF