• Title/Summary/Keyword: Nickel reduction

Search Result 193, Processing Time 0.021 seconds

Selective Hydrogenation of 1,3-Butadiene over Supported Nickel Catalyst Obtained from Nickel-Zirconia Solid Solution

  • Chang, Jong-San;Ryu, Jae-Oak;Lee, Jong-Min;Park, Sang-Eon;Hong, Do-Young;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1512-1514
    • /
    • 2005
  • Catalytic properties of Ni-Zr$O_2$ catalysts prepared by coprecipitation have been studied for the gas-phase hydrogenation of 1,3-butadiene to butenes. The coprecipitation method led to the solid solution of Ni-Zr$O_2$, which contains highly resistant Ni species to thermal reduction with H2. Nickel species of the solid solution were highly dispersed in the ZrO2 lattice, so that the reduced catalysts were selective for hydrogenation of 1,3-butadiene to butenes (99.9%) even in the presence of 1-butene.

Electrochemical Properties of Nickel(II) Complexes with Multidentate N, O-Schiff Base Ligands (여러 자리 산소-질소계 시프염기 리간드 니켈(II)착물의 전기화학적 특성)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Roh, Soo-Gyun
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.246-255
    • /
    • 1997
  • A series of Ni(II) complexes with multidentate N, O-Schiff base ligands: ie [bis-(salicylaldehyde) ethylenediamine(SED), bis-(salicylaldehyde) propylenediamine(SPD), bis-(salicylaldehyde) dietrylenetriamine(SDT), and bis-(salicylaldehyde) triethylenetetraamine(STT)] and Ni(II) complexes were synthesized. The Ni(II) complexes were characterized by elemental analysis, IR, UV-Vis and mass spectrometry. The stability constants of each nickel (II) complexes were determined by potentiometry in 70% dioxane-30% $H_2O$ and ethanol. The stability constants of Nickel(II) complexs increased in the order of Ni(II)-SPD

  • PDF

A Study on the Cytotoxic Effect of Heavy metals (Cd, Ni, Zn) on Cultured Mouse Fibroblast L929 Cell line (생쥐 배양섬유 모세포주 L929에 미치는 중금속(Cd, Ni, Zn)류의 세포독성에 관한 연구)

  • 이종빈;나명석;황영진;위성욱;최진희;김선희;유춘만;김재민
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.98-105
    • /
    • 1997
  • The study on the cytotoxicity of heavy metals was carried out to evaluate the cytotoxic effect of those on mouse L929 fibroblast cell in 96-well microtiter plates. The cytotoxicity was assayed by the neutral red, tetrazolium MTT, total protein, micronuclei test. The cytotoxicity of the heavy metals by neutral red and tetrazolium MTT was showed in order, cadmium > zinc > nickel for the cationic metals tested. The effect of metal-metal interaction on the cytotoxicity showed a marked reduction of cadmium toxicity by zinc, to a lesser degree, by nickel. The amount of total protein in treated group added heavy metals was less than that of the control and treated cadmium alone was less than those of combination with nickel or zinc. At midpoint cytotoxicity values of heavy metals, the frequency of micronuclei on the cell treated heavy metals was more than that of control and treated cadmium alone was more than those of combination with nickel or zinc. From those results, it could be suggested that the heavy metals decreased the viability of mouse fibroblast L929 cells in a concentration-dependent manner and have cytogenic toxic effects, but mixed group decreased the cytotoxic and cytogenic toxicity on L929 cells.

  • PDF

Preparation and Characterization of Microfiltration Membrane by Metal Particles (금속입자를 이용한 정밀여과막 제조와 특성평가)

  • Kim, In-Chul;Lee, Kew-Ho;Park, Joo-Young;Jeong, Bo-Reum;Kwon, Ja-Young
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.381-386
    • /
    • 2007
  • Hollow fibers were made using the nickel slurry containing nickel particles and polymers by phase inversion method. And then, metallic filters were fabricated by sintering method at $1,150^{\circ}C$ under reduction condition. Metallic microfiltration membranes were prepared by coating nickel particles on the metallic filter. The properties of the metallic hollow fiber filters and microfiltration membranes such as pore size and strength were investigated. The metallic membrane showed good resistance against acid, base and chlorine. It was observed that the membrane exhibited good recovery rate by back washing.

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee;Tae-Soo Yeo;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.418-421
    • /
    • 2023
  • Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.

A Study on the Preparation of Oil Hydrogenation Catalysts Using Nickel Extracted from the Spent Catalysts (폐촉매로부터의 니켈 추출 및 이를 이용한 유지경화용 수소화 촉매의 제조)

  • Kim, Tae-Jin;Cha, Ik-Soo;Lee, Hee-Cheol;Ahn, Wha-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.925-934
    • /
    • 1994
  • Nickel recovered from the spent oil-hydrogenation catalysts was used in hydrogenation catalyst preparation. The spent catalyst contains approximately 21.8% Ni, 0.7% Mg, and small quantities of Al, Fe, and Zn. Nickel recovery was obtained by inorganic acid digestion in the order of HCI>$NHO_3$>$H_2SO_4$. For $HNO_3$, 3hour extraction with 3N solution was satisfactory. In the PH range of 6.5~9.0, Ni recovery was higher, but metallic impurities were found to be coprecipitated. The PH in the range of 7.0~9.0 seems to be the optimum condition for separation to obtain acceptable Ni precipitates without the decrease of purity. The catalysts prepared with reclaimed nickel by wet reduction methods showed catalytic activities close to those prepared using reagent nickel in the oil hydrogenation reaction. The surface areas of the support do not seem to affect the catalytic activity.

  • PDF

A Study on the Catalytic Reduction of Carbon Dioxide by Methane (메탄에 의한 이산화탄소의 환원반응에 관한 연구)

  • Hong, Seong-Soo;Yang, Jin-Seop;Kim, Byung-Kee;Ju, Chang-Sik;Lee, Gun-Dae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.685-693
    • /
    • 1997
  • We have studied the reforming of carbon dioxide with methane over various supported nickel catalysts. The nickel supported on natural zeolite showed the highest activity and the nickel on acidic support showed higher activity and slow deactivation compared to nickel on basic support. The activity of nickel on natural zeolite increased with increasing loading ratio and showed almost constant activity above 10wt.% loading of nickel. The conversion and yield of products were affected by the mole ratio of reactants and the highest yields of CO and $H_2$ were obtained at $CH_4/CO_2=1$. The deactivation of catalyst was caused by deposition of coke which was formed by the decomposition of methane. The shape of coke was shown to be whisker tripe carbon, and it brought out the slow deactivation of catalyst.

  • PDF

Preparation of Submicron Nickel Powders with Non-aqueous Solvent In Microwave-Assisted Reduction Method (비수계 용매를 사용하는 마이크로파 환원법에 의한 서브마이크론 니켈 분말의 합성)

  • Jeon, Seung Yup;Kim, Jae-Hwan;Park, Na Yi;Park, Hoy Yul;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-325
    • /
    • 2007
  • Nickel powders were prepared from an aqueous nickel acetate solution and hydrazine hydrate using diethanolamine as the nonaqueous organic solvent in the conventional and microwave synthetic method. It was investigated that microwave non-thermal effect and synthetic condition affect the preparation of nickel powders by means of X-ray diffractometry, scanning electron microscopy, thermal gravymetry analysis, and X-ray photoelectron spectroscopy analysis. Compared with the conventional synthetic method, less of aggregation, smaller particle size, and more uniform distribution of particle size were obtained in the microwave synthetic method due to the non-thermal effect of microwaves.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).