Preparation and Characterization of Microfiltration Membrane by Metal Particles

금속입자를 이용한 정밀여과막 제조와 특성평가

  • Kim, In-Chul (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Kew-Ho (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Park, Joo-Young (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Jeong, Bo-Reum (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kwon, Ja-Young (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 김인철 (한국화학연구원 신화학연구단 환경에너지연구센터) ;
  • 이규호 (한국화학연구원 신화학연구단 환경에너지연구센터) ;
  • 박주영 (한국화학연구원 신화학연구단 환경에너지연구센터) ;
  • 정보름 (한국화학연구원 신화학연구단 환경에너지연구센터) ;
  • 권자영 (한국화학연구원 신화학연구단 환경에너지연구센터)
  • Published : 2007.12.30

Abstract

Hollow fibers were made using the nickel slurry containing nickel particles and polymers by phase inversion method. And then, metallic filters were fabricated by sintering method at $1,150^{\circ}C$ under reduction condition. Metallic microfiltration membranes were prepared by coating nickel particles on the metallic filter. The properties of the metallic hollow fiber filters and microfiltration membranes such as pore size and strength were investigated. The metallic membrane showed good resistance against acid, base and chlorine. It was observed that the membrane exhibited good recovery rate by back washing.

니켈입자와 고분자를 함유한 니켈슬러리를 상전환법을 이용하여 중공사 형태로 성형한 후, 소결법을 이용하여 $1,150^{\circ}C$ 환원조건에서 소결하여 금속 필터를 제조하였고 니켈 입자를 표면에 함침한 후, $800^{\circ}C$ 환원조건에서 소결하여 금속 정밀여과막을 제조하였다. 소결조건에 따른 금속 중공사 필터와 정밀여과막의 기공크기, 강도를 살펴보았다. 금속 중공사 정밀여과막은 산, 염기 및 염소에 대한 저항성이 뛰어났으며 역세척에 의한 투수량 회복률이 우수하였다.

Keywords

References

  1. A. W. Zularisam, A. F. Ismail, and R. Salim, 'Behaviors of natural organic matter in membrane filtration for surface water treatment', Desalination, 194, 211 (2006) https://doi.org/10.1016/j.desal.2005.10.030
  2. J.-H. Chung, K.-H. Choo, and H.-S. Park, 'Low pressure hybrid membrane processes for drinking water treatment', Membrane J., 17(3), 161 (2007)
  3. W. Yuan and L. Zydney, 'Humic acid fouling during microfiltration', J. Membr. Sci., 157, 1 (1999) https://doi.org/10.1016/S0376-7388(98)00329-9
  4. S. Xia, J. Nan, R. Liu, and G. Li, 'Study of drinking water treatment by microfiltration of surface water and its application to China', Desalination, 170, 41 (2004) https://doi.org/10.1016/j.desal.2004.03.014
  5. X. Tan, S. Liu, and K. Li, 'Preparation and characterization of inorganic hollow fiber membranes', J. Membr. Sci., 188, 87 (2001) https://doi.org/10.1016/S0376-7388(01)00369-6
  6. S. Liu and K. Li, 'Preparation of TiO2/Al2O3 composite hollow fiber membranes', J. Membr. Sci., 218, 269 (2003) https://doi.org/10.1016/S0376-7388(03)00184-4
  7. I. C. Kim, K.-H. Lee, I. H. Choi, and B. R. Min, 'Preparation and characterization of ultrathin alumina hollow fiber microfiltration membrane', Desalination, 193, 256 (2006) https://doi.org/10.1016/j.desal.2005.07.051
  8. A. P. Padilla, J. A. Rodriguez, and H. A. Saitua, 'Synthesis and water ultrafiltration properties of silver membrane support on porous ceramics', Desalination, 114, 203 (1997) https://doi.org/10.1016/S0011-9164(98)00012-5
  9. M. Asaeda, Y. Sakou, J. Yang, and K. Shimasaki, 'Stability and performance of porous silica-zirconia composite membrane for pervaporation of aqueous organic solutions', J. Membr. Sci., 209, 163 (2002) https://doi.org/10.1016/S0376-7388(02)00327-7
  10. J. D. Jong, N. E. Benes, G. H. Koops, and M. Wessling, 'Towards single step production of multi-layer inorganic hollow fibers', J. Membr. Sci., 239, 265 (2004) https://doi.org/10.1016/j.memsci.2004.02.039
  11. L. Zhao, M. Bram, H. P. Buchkremer, D. Stover, and Z. Li, 'Preparation of $TiO_2$ composite microfiltration membranes by the wet powder spraying method', J. Membr. Sci., 224, 107 (2004) https://doi.org/10.1016/j.memsci.2003.07.003
  12. E. J. Dobo and T. E. Graham, US patent 4,175,153 (1979)
  13. E. J. Dobo, US patent 4,222,977 (1980)
  14. R. K. Ames, E. A. Bluhm, J. D. Way, A. L. Bunge, K. D. Abney, and S. B. Schreiber, 'Physical characterization of 0.5 ${\mu}m$ cut-off sintered stainless steel membranes', J. Membr. Sci., 213, 13 (2003) https://doi.org/10.1016/S0376-7388(02)00508-2
  15. S. K. Rye, J. S. Park, S. H. Kim, S. H. Cho, and D. W. Kim, 'Development of a new porous metal support of metallic dense membrane for hydrogen separation', J. Membr. Sci., 279, 439 (2006) https://doi.org/10.1016/j.memsci.2005.12.035
  16. T. Leiknes, H. Odegaard, and H. Myklebust, 'Removal of natural organic matter in drinking water treatment by coagulation-microfiltration using metal membranes', J. Membr. Sci., 242, 47 (2004) https://doi.org/10.1016/j.memsci.2004.05.010
  17. S. Zhang, F. Yang, Y. Liu, X. Zhang, Y. Yamada, and K. Furukawa, 'Performance of a metallic membrane bioreactor treatment simulated distillery wastewater at temperature of 30 to $45^{\circ}C$', Desalination, 194, 146 (2006) https://doi.org/10.1016/j.desal.2005.10.029
  18. M. Cheryan, 'Ultrafiltration and Microfiltration Handbook', pp. 31-69, Technomic, Lancaster (1998)
  19. S.-H. Min, J.-O. Kim, and J.-T. Jung, 'Manufacturing and filtration performance of microfiltration metal membrane using rolling process', Membrane J., 17(3), 174 (2007)