Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations

양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구

  • Lee, Ji Hyun (Department of Chemical Engineering, Kyungnam University) ;
  • Hwang, Young Gi (Department of Chemical Engineering, Kyungnam University)
  • Received : 2009.09.18
  • Accepted : 2009.10.21
  • Published : 2010.02.10

Abstract

Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

중금속 이온이나 방사성 양이온을 처리하는 공정으로서 화학약품에 의한 침전법이나 일반 이온교환법을 가장 보편적으로 활용하고 있으나, 이 공정들은 약품의 과다 투여, 유효 금속의 폐기, 고형 폐기물에 의한 2차적인 토양 오염 유발 등과 같은 문제점을 가지고 있다. 이에 따라 최근 들어 선진국을 중심으로 전해환원 전착반응과 이온교환 반응을 결합시킨 전기화학적 이온교환법을 대체 신기술로 개발하고자 많은 관심과 연구가 집중되고 있다. 본 연구에서는 전기화학적 이온교환체 중의 하나인 nickel hexacyanoferrate (NiHCNFe)의 최적 제조조건을 규명하기 위해, 기지금속인 니켈판 표면에 화학적 방법과 전기화학적 방법으로 NiHCNFe 막을 생성하였으며, NiHCNFe의 구조 형태와 조성을 각각 SEM과 EDS 분석을 통하여 조사하였다. 또한 NiHCNFe 막이 생성된 니켈판을 운전전극으로 설치한 단일 평행평판 이온교환 전극반응기에서 산화-환원 전위를 연속적으로 순환시켜 순환전위곡선을 측정하고 피크 전류의 변화 거동을 조사하였다. 본 연구의 실험 결과에 의하면, 화학적으로 제조한 NiHCNFe가 전기화학적으로 제조한 경우보다 우수함을 알 수 있었고, 특히 118 h 화학반응시킨 NiHCNFe 이온교환체의 조밀도, 밀착성, 내구력이 가장 우수하게 나타났다.

Keywords

Acknowledgement

Supported by : 경남대학교

References

  1. C. Loos-Neskovic and M. Fedoroff, Radioactive Waste Management and the Nuclear Fuel Cycle, 11, 347 (1989)
  2. N. J. Bridger, C. P. Jones, and M. D. Neville, J. Chem. Technol. Biotechnol., 50, 469 (1991)
  3. R. Harjula, J. Lehto, E. H. Tusa, and A. Paavola, Nucl. Technol., 107, 272 (1994) https://doi.org/10.13182/NT94-A35007
  4. E. H. Tusa, A. Paavola, R. Harjula, and J. Lehto, Nucl. Technol., 107, 279 (1994)
  5. H. Mimura, J. Lehto, and R. Harjula, J. Nucl. Sci. Technol., 34, 5 (1997) https://doi.org/10.3327/jnst.34.5
  6. V. G. Amelin, J. Anal. Chem., 54, 574 (1999)
  7. K. Shakir, H. F. Ghoneimy, Sh. G. Beheir, and M. Refaat, Sep. Sci. Technol., 42, 1341 (2007) https://doi.org/10.1080/01496390601174257
  8. J. B. Brower and M. P. Ryan, Environ. Sci. Technol., 31, 10 (1999)
  9. D. E. Kurath, L. A. Bray, K. P. Brooks, G. N. Brown, S. A. Brayan, C. D. Carlson, K. J. Carson, J. R. DesChane, R. J. Elovich, and A. Y. Kim, PNNL-10187, Pacific Northwest National Laboratory, Richland, Washington (1994)
  10. A. B. Bocarsly, Accounts Chem. Res., 13, 135 (1982)
  11. A. D. Turner, A. R. Junkison, N. J. Bridger, and M. D. Neville, 3rd Int’al Conf. on Nuclear Fuel Processing and Waste Management (RECOD'91) Sendai, Japan, 14-18, 735 (1991)
  12. H. C. Manosso and C. A. L. G. de O. Forbicini, J. Radioanal. Nucl. Chem., 279, 417 (2009) https://doi.org/10.1007/s10967-007-7201-4
  13. C. A. Basha, P. K. Ghosh, and G. Gajalakshmi, Electrochim. Acta, 54, 474 (2008) https://doi.org/10.1016/j.electacta.2008.07.040
  14. C. P. Jones, M. D. Neville, and A. D. Turner, Electrochemistry for a Cleaner Environment, D. Henders and N. Weinberg, 207, The Electrosynthesis Company Inc., East Amherst, N. Y. (1992)
  15. T. Ikeshoji, J. Electrochem. Soc., 133, 2108 (1986) https://doi.org/10.1149/1.2108350
  16. K. Kuroda, T. Kobayashi, T. Sakamoto, R. Ichino, and M. Okido, Thin Solid Films, 478, 223 (2005) https://doi.org/10.1016/j.tsf.2004.11.101
  17. E. Laviron, J. Electroanal. Chem., 112, 1 (1980) https://doi.org/10.1016/S0022-0728(80)80002-7
  18. R. W. Murray, Accounts Chem. Res., 13, 135 (1980) https://doi.org/10.1021/ar50149a002
  19. D. Ellis, M. Eckhoff, and V. D. Neff, J. Phys. Chem., 85, 1225 (1981) https://doi.org/10.1021/j150609a026
  20. A. B. Bocarsly and S. Sinha, J. Electroanal. Chem. interfacial Electrochem., 137, 157 (1982) https://doi.org/10.1016/0022-0728(82)85075-4
  21. B. D. Humphrey, S. Sinha, and A. B. Bocarsly, J. Phys. Chem., 91, 586 (1987)
  22. K. Itaya, I. Uchida, and V. D. Neff, Accounts Chem. Res., 19, 162 (1986) https://doi.org/10.1021/ar00126a001
  23. J. Bacskai, K. Martinusz, E. Czirok, G. Inzelt, P. J. Kulesza, and M. A. Malik, J. Electroanal. Chem., 385, 241 (1995) https://doi.org/10.1016/0022-0728(94)03788-5
  24. I. Carpani, M. Giorgetti, M. Berrettoni, P. Luigi Buldini, M. Gazzano, and D. Tonelli, J. Solid State Chem., 179, 3981 (2006) https://doi.org/10.1016/j.jssc.2006.09.004
  25. A. B. Bocarsly and S. Sinha, J. Electroanal. Chem., 140, 167 (1982) https://doi.org/10.1016/0368-1874(82)85310-0
  26. Y. Tani, H. Eun, and Y. Umezawa, Electrochim. Acta, 43, 23, 3431 (1998)
  27. S. Sinha, B. D. Humphrey, and A. B. Bocarsly, Inorg. Chem., 23, 203 (1984) https://doi.org/10.1021/ic00170a018