• Title/Summary/Keyword: Nickel reduction

Search Result 192, Processing Time 0.035 seconds

Recovery of Nickel Metal from the Spent FeCl$_3$ Etching Solution by Solvent Extraction and Chemical Reduction (FeCl$_3$ 에칭廢液으로부터 溶媒抽出과 化學沈澱에 의한 니켈金屬 回收)

  • Lee, Man-Seung;Kim, Myoung-Sik
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.48-54
    • /
    • 2005
  • Solvent extraction and chemical reduction experiments have been performed to separate iron and nickel from a spent FeCl$_3$ etching solution and to recover nickel metal. It was possible to separate iron and nickel by extracting the spent solution with Alamine336. At the O/A ratio of 7:1, iron extraction percentage of 99% was obtained. In the stripping of the loaded organic with 0.01 M HCl solution, iron stripping percentage of 99% was obtained when the A/O ratio was 7:1. When the pH of the raffinate was controlled to be 10.5, nickel metal powder with 99% purity was obtained by using hydrazine as a reducing agent at 100$^{\circ}C$. A process was suggested to recover nickel metal from the spent FeCl$_3$ solution and to regenerate etching solution.

Synthesis of nickel fine powder in the mixed solvent of water and ethanol and ie oxidation behaviors (물과 에탄올의 혼합용매로부터 니켈 미분말의 합성 및 산화특성)

  • 이상근;최은영;이윤복;김광호;박희찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • Nickel fine powders were prepared from nickel chloride aqueous solution containing ethanol as an organic solvent, and their oxidation behaviors were investigated. The reduction reaction by hydrazine from nickel chloride aqueous solution containing ethanol depend on reaction temperature. The reduction reaction time by hydrazine decreased with the increase of reaction temperature. By controlling reaction temperature, the products could be obtained spherical particles in the range of 0.1 $\mu\textrm{m}$~1.0 $\mu\textrm{m}$. Also, As reaction temperature increased from $40^{\circ}C$ to $80^{\circ}C$, the particle size slightly increased and had a broad size distribution owing to the presence of the coarse particles. The mean particle size and specific surface area of nickel powders prepared at $60^{\circ}C$ were 0.3 $\mu\textrm{m}$ and 31.8 $\m^2$/g, respectively. Weight loss of the powders at $300^{\circ}C$ was due to composition of $_Ni(OH)2$. In case of heat treatment at $200^{\circ}C$ in air, oxidation resistance of nickel powders was remarkable than that of as-synthesized.

Texture Formation of Eletroplated Nickel and Nickel Alloy on Cu Substrate (구리 기판에 전착시킨 니켈과 니켈합금의 집합조직 형성)

  • Kim, Jae-Geun;Lee, Sun-Wang;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at $400-800^{\circ}C$. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above $900^{\circ}C$. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was $9.9^{\circ}\;and\;13.4^{\irc}$, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was $8.6^{\circ}$, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above $900^{\circ}C$ by electroplated nickel.

  • PDF

Electroless Nickel Plating (무전해 니켈도금에 대하여(I))

  • 지태촌;여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Electroless plating is the continious formation of metallic coatings from metal ions by che-mical reduction without the use of electrical current. This is, however, more expansive than the conventional electroplating but is often used because of certain adventage. Here, general description of past research on electroless nickel plating, especially about the merits of each research was given. Part(Ⅰ) is for the conposition of solution, pretreatment and facilities of electroless nickel plating.

  • PDF

Regeneration of Spent Nickel Catalyst for Hydrogenation (수소화 반응용 니켈 폐촉매의 재생)

  • 전종기;박영권;김주식
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Nickel oxide was recovered through roasting of a spent catalyst for hydrogenation reaction. Nickel on Kieselguhr catalysts were prepared by a precipitation method after a treatment of the recovered-nickel oxide with an acid. Effects of roasting temperature of the spent catalyst on recovery of nickel oxide was investigated. Most of nickel oxide could be recovered through roasting of the spent catalyst at $1000^{\circ}C$. In regeneration of catalysts by the precipitation method after the treatment of nickel oxide with an acid, the effect of promoter, precipitation condition and reduction condition on catalytic performance in vegetable oil hydrogenation were investigated. The addition of CaO or $Ce_2$$O_3$ resulted in an increase of catalytic activity.

Structural and Electrical Properties of Nickel Hydroxide Electrode Prepared by Hydrothermal Synthesis on Nickel Foam (니켈 폼(Ni foam)에 수열 합성법으로 제조한 수산화니켈(Ni(OH)2) 전극의 구조적 및 전기적 특성)

  • Hyunjin Cha;Seokhee Lee;Jeonghwan Park;Young-Guk Son;Donghyun Hwang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, the nickel hydroxide (Ni(OH)2) electrode for supercapacitor was prepared via hydrothermal method. Based on the nickel (Ni) foam, the electrode does not require any additional binder material or post-processing. Nickel nitrate (Ni(NO3)2) and hexamethylenetetramine (C6H12N4) were used for synthesis, and the synthesis condition was 12 hours at 80 ℃. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were used to analyze the structural characteristics of the electrode, and it shown that the nickel hydroxide was successfully prepared after only the one-step hydrothermal synthesis. The electrochemical properties were analyzed through the half-cell test. The prepared electrode shown a pair of oxidation/reduction peaks, indicating that the driving method included the redox reaction on the electrode surface. After the charge/discharge test, the specific capacitance was calculated as the value of 438 F/g at 3 A/g.

Template Synthesis of Polyaza Macrocyclic Copper(II) and Nickel(II) Complexes: Spectral Characterization and Antimicrobial Studies

  • Gurumoorthy, P.;Ravichandran, J.;Karthikeyan, N.;Palani, P.;Rahiman, A. Kalilur
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2279-2286
    • /
    • 2012
  • The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-aminopropylamino)ethane produce the 12-membered $N_3O$ and 17-membered $N_4O$ macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear $N_3O$ and $N_4O$ copper(II) complexes show one irreversible oneelectron reduction wave at $E_{pc}=-1.35$ and -1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at $E_{pc}=-1.25$ and -1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at $E_{pa}=+0.84$ and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

Preparation of Nickel Powders by the Reduction of Ni(OH)2 Reactant Slurries from Nonaqueous Media (비수용성 매질로부터 Ni(OH)2 반응슬러리의 환원반응에 의한 니켈 분말의 제조)

  • Choi Eun Young;Lee Yoon Bok;Yoon Suk Young;Kim Kwang Ho;Kim Jin Chun;Rhyim Young Mok;Kim Hyong Kuk;Kim Yang Do
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.334-339
    • /
    • 2005
  • Nickel Powders were synthesized by the reduction of $Ni(OH)_2$ reactant slurries from nonaqueous media, and the morphological characteristics of nickel powders with the addition of NaOH, the composition of mixed solvents, reaction temperature and reaction time were investigated. The NaOH addition changed the structure of agglomeration in the submicron range. As the volume ratio of TEA to DEA increased, the powders slightly suppressed the agglomeration between particles and their size increased. The reaction temperature on size and shape of nickel powders was significant. As reaction time was shortened from 40 min to 0.3 min at $220^{\circ}C$, size distribution of nickel powders was transferred to a narrow size distribution owing to the presence of smaller particles with below $1.0\;{\mu}m$.

Synthesis and Magnetic Properties of Nanocrystalline Fe-Ni Alloys During Hydrogen Reduction of NiFe2O4 (NiFe2O4의 수소환원에 의한 나노구조 Fe-Ni 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • Nickel ferrite ($NiFe_2O_4$) powder was prepared through the ceramic route by calcination of a stoichiometric mixture of nickel oxide (NiO) and iron oxide ($Fe_2O_3$). The pressed pellets of $NiFe_2O_4$ were isothermally reduced in pure hydrogen at 800, 900, 1000 and $1100^{\circ}C$. Based on thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and various reduction products were characterized by XRD, SEM, reflected light microscope and VSM to reveal the effect of hydrogen reduction on the composition, microstructure, magnetic properties and reaction kinetics of the produced Fe-Ni alloy. Complete reduction of the $NiFe_2O_4$ was achieved with synthesis of homogeneous nanocrystalline Fe-Ni alloys. Arrhenius equation with the approved mathematical formulations for a gas-solid reaction was applied for calculating the activation energy ($E_a$) values and detecting the controlling reaction mechanism.