Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.1.052

Synthesis and Magnetic Properties of Nanocrystalline Fe-Ni Alloys During Hydrogen Reduction of NiFe2O4  

Paek, Min Kyu (Department of Metallurgical and Materials Engineering, Hanyang University)
Do, Kyung Hyo (Department of Metallurgical and Materials Engineering, Hanyang University)
Bahgat, Mohamed (Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI))
Pak, Jong Jin (Department of Metallurgical and Materials Engineering, Hanyang University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.1, 2011 , pp. 52-57 More about this Journal
Abstract
Nickel ferrite ($NiFe_2O_4$) powder was prepared through the ceramic route by calcination of a stoichiometric mixture of nickel oxide (NiO) and iron oxide ($Fe_2O_3$). The pressed pellets of $NiFe_2O_4$ were isothermally reduced in pure hydrogen at 800, 900, 1000 and $1100^{\circ}C$. Based on thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and various reduction products were characterized by XRD, SEM, reflected light microscope and VSM to reveal the effect of hydrogen reduction on the composition, microstructure, magnetic properties and reaction kinetics of the produced Fe-Ni alloy. Complete reduction of the $NiFe_2O_4$ was achieved with synthesis of homogeneous nanocrystalline Fe-Ni alloys. Arrhenius equation with the approved mathematical formulations for a gas-solid reaction was applied for calculating the activation energy ($E_a$) values and detecting the controlling reaction mechanism.
Keywords
magnetic materials; chemical synthesis; hydrogen; X-ray diffraction; reduction kinetics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 W. Tremel, H. Kleinke, Derstroff, and C. Reisner, J. Alloys Compd. 219, 73 (1995).   DOI   ScienceOn
2 N. Grobert, M. Mayne, M. Terrones, J. Sloan, R. Kamalakaran, T. Seeger, H. Terrones, N. Ruhle, H. W. Kroto, and J. Hutchison, Chem. Commun. 471 (2001).
3 S. Vitta, A. Khuntia, G. Ravikumar, and D. Bahadur, J. Magn. Magn. Mater. 320, 182 (2008).   DOI   ScienceOn
4 J. W. Kim and D. R. Kim, J. Kor. Inst. Met. & Mater. 42, 760 (2004).
5 H. V. Venkatasetty, J. Electrochem. Soc. 117, 403 (1970).   DOI
6 L. T. Romankiw, I. M. Crolland, and M. Hatzakis, IEEE Transactions on Magnetics 6, 597 (1970).   DOI
7 Y. Chimi, N. Ishikawa, A. Iwase, and F. Ono, Nuclear Inst. Methods Phys. Research, B257, 388 (2007).
8 F. Mao-sheng, C. Lin-shen, L. Jian-guo, and C. Song-ying, J. Fuel Chem. Technol. 35, 431 (2007).   DOI   ScienceOn
9 D. Chen, D. Chen, X. Jiao, Y. Zhao, and M. He, Powder Tech. 133, 247 (2003).   DOI   ScienceOn
10 I. Gul, F. Amin, A. Z. Abbasi, and A. Maqsood, Scripta Materialia 56, 497 (2007).   DOI   ScienceOn
11 L. Juan, L. Shen-Chen, and S. Ying-Chen, J. Physics and Chemistry of Solids 68, 1330 (2007).   DOI   ScienceOn
12 J. Fang, N. Shama, L. D. Tung, E. Y. Shin, and J. Tang, J. Appl. Phys. 93, 7483 (2003).   DOI   ScienceOn
13 M. Shobana, V. Rajendran, K. Jeyasubramanian, and N. Suresh Kumar, Materials Letters 61, 2616 (2007).   DOI   ScienceOn
14 S. Ebrahimi, C. Ponton, and I.harris, J. Mater. Sci. 34, 45 (1999).   DOI   ScienceOn
15 Y. Li, E. R. Maxey, J. W. Richardson Jr., and B. Ma, J. Mater. Sci. Eng. B 106, 6 (2004).   DOI   ScienceOn
16 M. Bahgat, Mineral Processing and Extractive Metallurgy. 115, 195 (2006).   DOI   ScienceOn
17 J. Szekely, J. Evans, and H. Y. Sohn, Gas Solid Reactions, p.129, AcademicPress, NewYork (1976).
18 B. D. Cullity, Introduction to Magnetic Materials, p.697, Addison-Wesley Publishing Com. (1972).
19 G. Herzer, IEEE Transactions on Magnetics 25, 3327 (1989).   DOI   ScienceOn
20 Y. Liu, J. Zhang, L. Yu, G. Jia, and C. Jing, J. Magn. Magn. Mater. 285, 138 (2005).   DOI   ScienceOn