DOI QR코드

DOI QR Code

Synthesis and Magnetic Properties of Nanocrystalline Fe-Ni Alloys During Hydrogen Reduction of NiFe2O4

NiFe2O4의 수소환원에 의한 나노구조 Fe-Ni 합금의 제조 및 자성특성

  • Paek, Min Kyu (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Do, Kyung Hyo (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Bahgat, Mohamed (Minerals Technology Department, Central Metallurgical Research and Development Institute (CMRDI)) ;
  • Pak, Jong Jin (Department of Metallurgical and Materials Engineering, Hanyang University)
  • 백민규 (한양대학교 금속재료공학과) ;
  • 도경효 (한양대학교 금속재료공학과) ;
  • ;
  • 박종진 (한양대학교 금속재료공학과)
  • Received : 2010.10.26
  • Published : 2011.01.25

Abstract

Nickel ferrite ($NiFe_2O_4$) powder was prepared through the ceramic route by calcination of a stoichiometric mixture of nickel oxide (NiO) and iron oxide ($Fe_2O_3$). The pressed pellets of $NiFe_2O_4$ were isothermally reduced in pure hydrogen at 800, 900, 1000 and $1100^{\circ}C$. Based on thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and various reduction products were characterized by XRD, SEM, reflected light microscope and VSM to reveal the effect of hydrogen reduction on the composition, microstructure, magnetic properties and reaction kinetics of the produced Fe-Ni alloy. Complete reduction of the $NiFe_2O_4$ was achieved with synthesis of homogeneous nanocrystalline Fe-Ni alloys. Arrhenius equation with the approved mathematical formulations for a gas-solid reaction was applied for calculating the activation energy ($E_a$) values and detecting the controlling reaction mechanism.

Keywords

References

  1. W. Tremel, H. Kleinke, Derstroff, and C. Reisner, J. Alloys Compd. 219, 73 (1995). https://doi.org/10.1016/0925-8388(94)05064-3
  2. N. Grobert, M. Mayne, M. Terrones, J. Sloan, R. Kamalakaran, T. Seeger, H. Terrones, N. Ruhle, H. W. Kroto, and J. Hutchison, Chem. Commun. 471 (2001).
  3. S. Vitta, A. Khuntia, G. Ravikumar, and D. Bahadur, J. Magn. Magn. Mater. 320, 182 (2008). https://doi.org/10.1016/j.jmmm.2007.05.021
  4. J. W. Kim and D. R. Kim, J. Kor. Inst. Met. & Mater. 42, 760 (2004).
  5. H. V. Venkatasetty, J. Electrochem. Soc. 117, 403 (1970). https://doi.org/10.1149/1.2407524
  6. L. T. Romankiw, I. M. Crolland, and M. Hatzakis, IEEE Transactions on Magnetics 6, 597 (1970). https://doi.org/10.1109/TMAG.1970.1066881
  7. Y. Chimi, N. Ishikawa, A. Iwase, and F. Ono, Nuclear Inst. Methods Phys. Research, B257, 388 (2007).
  8. F. Mao-sheng, C. Lin-shen, L. Jian-guo, and C. Song-ying, J. Fuel Chem. Technol. 35, 431 (2007). https://doi.org/10.1016/S1872-5813(07)60027-9
  9. D. Chen, D. Chen, X. Jiao, Y. Zhao, and M. He, Powder Tech. 133, 247 (2003). https://doi.org/10.1016/S0032-5910(03)00079-2
  10. I. Gul, F. Amin, A. Z. Abbasi, and A. Maqsood, Scripta Materialia 56, 497 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.020
  11. L. Juan, L. Shen-Chen, and S. Ying-Chen, J. Physics and Chemistry of Solids 68, 1330 (2007). https://doi.org/10.1016/j.jpcs.2007.02.022
  12. J. Fang, N. Shama, L. D. Tung, E. Y. Shin, and J. Tang, J. Appl. Phys. 93, 7483 (2003). https://doi.org/10.1063/1.1555394
  13. M. Shobana, V. Rajendran, K. Jeyasubramanian, and N. Suresh Kumar, Materials Letters 61, 2616 (2007). https://doi.org/10.1016/j.matlet.2006.10.008
  14. S. Ebrahimi, C. Ponton, and I.harris, J. Mater. Sci. 34, 45 (1999). https://doi.org/10.1023/A:1004449120992
  15. Y. Li, E. R. Maxey, J. W. Richardson Jr., and B. Ma, J. Mater. Sci. Eng. B 106, 6 (2004). https://doi.org/10.1016/j.mseb.2003.07.004
  16. M. Bahgat, Mineral Processing and Extractive Metallurgy. 115, 195 (2006). https://doi.org/10.1179/174328506X148920
  17. J. Szekely, J. Evans, and H. Y. Sohn, Gas Solid Reactions, p.129, AcademicPress, NewYork (1976).
  18. B. D. Cullity, Introduction to Magnetic Materials, p.697, Addison-Wesley Publishing Com. (1972).
  19. G. Herzer, IEEE Transactions on Magnetics 25, 3327 (1989). https://doi.org/10.1109/20.42292
  20. Y. Liu, J. Zhang, L. Yu, G. Jia, and C. Jing, J. Magn. Magn. Mater. 285, 138 (2005). https://doi.org/10.1016/j.jmmm.2004.07.030