DOI QR코드

DOI QR Code

Structural and Electrical Properties of Nickel Hydroxide Electrode Prepared by Hydrothermal Synthesis on Nickel Foam

니켈 폼(Ni foam)에 수열 합성법으로 제조한 수산화니켈(Ni(OH)2) 전극의 구조적 및 전기적 특성

  • Hyunjin Cha (School of Materials Science and Engineering, Pusan National University) ;
  • Seokhee Lee (School of Materials Science and Engineering, Pusan National University) ;
  • Jeonghwan Park (School of Materials Science and Engineering, Pusan National University) ;
  • Young-Guk Son (School of Materials Science and Engineering, Pusan National University) ;
  • Donghyun Hwang (Department of Batteries Science and Engineering, Silla University)
  • 차현진 (부산대학교 재료공학과) ;
  • 이석희 (부산대학교 재료공학과) ;
  • 박정환 (부산대학교 재료공학과) ;
  • 손영국 (부산대학교 재료공학과) ;
  • 황동현 (신라대학교 배터리학과)
  • Received : 2023.08.30
  • Accepted : 2023.10.24
  • Published : 2023.10.31

Abstract

In this study, the nickel hydroxide (Ni(OH)2) electrode for supercapacitor was prepared via hydrothermal method. Based on the nickel (Ni) foam, the electrode does not require any additional binder material or post-processing. Nickel nitrate (Ni(NO3)2) and hexamethylenetetramine (C6H12N4) were used for synthesis, and the synthesis condition was 12 hours at 80 ℃. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were used to analyze the structural characteristics of the electrode, and it shown that the nickel hydroxide was successfully prepared after only the one-step hydrothermal synthesis. The electrochemical properties were analyzed through the half-cell test. The prepared electrode shown a pair of oxidation/reduction peaks, indicating that the driving method included the redox reaction on the electrode surface. After the charge/discharge test, the specific capacitance was calculated as the value of 438 F/g at 3 A/g.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Q. Abbas, M. R. C. Hunt, M. Mirzaeian, P. Hall, R. Raza, Current state and future prospects for electrochemical energy storage and conversion systems, Energies, 13 (2020) 13215847 . 
  2. K. Krishnasamy, K.K. Purushothaman, Preparation and characterisation of MnS@ Mn3O4/C nanoflakes for hybrid supercapacitor applications, Materials Technology, 37 (2022) 63-70. 
  3. S. Zheng, Z. S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors, Energy Storage Materials, 6 (2017) 70-97.  https://doi.org/10.1016/j.ensm.2016.10.003
  4. S. Zhai, K. Jin, M. Zhou, Z. Fan, H. Zhao, X. Li, Y. Zhao, F. Ge, Z. Cai, A novel high performance flexible supercapacitor based on porous carbonized cotton/zno nanoparticle/cus micro-sphere, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 584 (2020) 124025. 
  5. W. H. Khoh, B. H. Wee, J. D. Hong, High performance flexible solid-state asymmetric supercapacitor composed of a polyaniline/pedot/polyaniline/ultralarge reduced graphene oxide tetralayer film and a pedot/MoS2 composite film, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581 (2019) 123815. 
  6. J. W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 1-16.  https://doi.org/10.1038/natrevmats.2016.13
  7. S. W. Zhang, B. S. Yin, X. X. Liu, D. M. Gu, H. Gong, Z. B. Wang, A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches, Nano Energy, 59 (2019) 41-49.  https://doi.org/10.1016/j.nanoen.2019.02.001
  8. C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, Frontiers in Energy Research, 3 (2015) 23. 
  9. W. S. Li, Y. C. Shih, H. C Cheng, Green synthesis of CNTs/Ni(OH)2 nanostructures for electrochemical supercapacitors, Chemical Physics Letters, 750 (2020) 137499. 
  10. K. Naoi, W. Naoi, S. Aoyagi, J. i. Miyamoto, T. Kamino, New generation "nanohybrid supercapacitor", Accounts of Chemical Research, 46 (2013) 1075-1083.  https://doi.org/10.1021/ar200308h
  11. H. G. Jo, D. Y. Shin, H. J. Ahn, Mesoporous control effect of porous carbon nanofibers for electrical double-layer capacitors, Korean Journal of Materials Research, 29 (2019) 167-174.  https://doi.org/10.3740/MRSK.2019.29.3.167
  12. K. Sharma, A. Arora, S. K. Tripathi, Review of supercapacitors: Materials and devices, Journal of Energy Storage, 21 (2019) 801-825.  https://doi.org/10.1016/j.est.2019.01.010
  13. D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Nickel hydroxides and related materials: A review of their structures, synthesis and properties, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2015) 20140792. 
  14. Y. Ma, M. Yang, X. Jin, Formation mechanisms for hierarchical nickel hydroxide microstructures hydrothermally prepared with different nickel salt precursors, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 588 (2020) 124374. 
  15. Y. Wang, B. Shang, F. Lin, Y. Chen, R. Ma, B. Peng, Z. Deng, Controllable synthesis of hierarchical nickel hydroxide nanotubes for high performance supercapacitors, Chemical Communications, 54 (2018) 559-562.  https://doi.org/10.1039/C7CC08879E
  16. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, Supercapacitors from nanotubes/polypyrrole composites, Chemical Physics Letters, 347 (2001) 36-40.  https://doi.org/10.1016/S0009-2614(01)01037-5
  17. T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, A cost-effective supercapacitor material of ultrahigh spercific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Advanced materials, 22 (2010) 347-351.  https://doi.org/10.1002/adma.200902175
  18. G. R. Fu, Z. A. Hu, L. J. Xie, X. Jin, Y. L. Xie, Y. X. Wang, Z. Y. Zhang, Y. Y. Yang, H. Y. Wu, Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor, International Journal of Electrochemical Science, 4 (2009) 1052-1062.  https://doi.org/10.1016/S1452-3981(23)15205-9
  19. Z. Li, W. Zhang, Y. Su, H. Wang, B. Yang, Effect of reaction temperature and time on the electrochemical properties of nickel hydroxide nanosheets, Applied Surface Science, 383 (2016) 268-275.  https://doi.org/10.1016/j.apsusc.2016.04.149
  20. N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices, Applied Surface Science, 416 (2017) 461-469.  https://doi.org/10.1016/j.apsusc.2017.04.094
  21. D. Lee, N. Shinde, J. C. Ding, J. Fu, R. K. Sahoo, H. W. Lee, J. M. Yun, H. Shin, K. Kim, Improvement of electrical performance by surface structure of Ni-material as a high-performance asymmetric supercapacitor electrode, Ceramics International, 46 (2020) 11189-11197.  https://doi.org/10.1016/j.ceramint.2020.01.140
  22. N. A. Salleh, S. Kheawhom, A. A. Mohamad, Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application, Arabian Journal of Chemistry, 13 (2020) 6838-6846.  https://doi.org/10.1016/j.arabjc.2020.06.036
  23. X. Yi, H. Sun, N. Robertson, C. Kirk, Nanoflower Ni(OH)2 grown in situ on ni foam for high-performance supercapacitor electrode materials, Sustainable Energy & Fuels, 5 (2021) 5236-5246.  https://doi.org/10.1039/D1SE01036K
  24. A. Kumar Mondal, D. Su, S. Chen, B. Sun, K. Li, G. Wang, A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance, RSC Advances, 4 (2014) 19476-19481.  https://doi.org/10.1039/C4RA01719F
  25. J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density, Advanced Functional Materials, 22 (2012) 2632-2641.  https://doi.org/10.1002/adfm.201102839
  26. M. Urso, G. Torrisi, S. Boninelli, C. Bongiorno, F. Priolo, S. Mirabella, Ni(OH)2@ Ni core-shell nanochains as low-cost high-rate performance electrode for energy storage applications, Scientific Reports, 9 (2019) 7736. 
  27. Y. Liu, N. Liu, J. Hu, C. Xu, S. Wang, G. Du, In situ growth of Ni(OH)2 nanoflakes on Ni foam as binder-free electrode for electrochemical pseudocapacitor, IOP Conference Series: Earth and Environmental Science, 585 (2020) 012200. 
  28. Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta--phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance, Chemical Communications, 47 (2011) 9651-9653.  https://doi.org/10.1039/c1cc13796d
  29. G. W. Yang, C. L. Xu, H. L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chemical Communications, 48 (2008) 6537-6539. 
  30. B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi, X. Sun, Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors, Electrochimica Acta, 107 (2013) 339-342.  https://doi.org/10.1016/j.electacta.2013.06.003
  31. J. Cao, Z. Zhang, H. Li, R. Zhu, S. Li, L. Ma, Facile preparation of nickel hydroxide nanoplates on nickel foam for high performance hydrogen generation, Sustainable Energy & Fuels, 4 (2020) 5031-5035.  https://doi.org/10.1039/D0SE00920B
  32. S. S. Waghmare, P. B. Patil, S. K. Baruva, M. S. Rajput, R. J. Deokate, S. H. Mujawar, Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties, AIP Conference Proceedings,1942 (2018) 140059. 
  33. J. H. Park, O. O. Park, K. H. Shin, C. S. Jin and J. H. Kim, An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode, Electrochemical and Solid-State Letters, 5 (2001) H7. 
  34. B. Akinwolemiwa, C. Peng and G. Z. Chen, Redox electrolytes in supercapacitors, Journal of the Electrochemical Society, 162 (2015) A5054.