DOI QR코드

DOI QR Code

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Hasolli, Naim (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Jeon, Seong-Min (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Lee, Kang-San (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kim, Kwang-Deuk (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kim, Yong-Ha (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Kwan-Young (Department of Chemical Biological Engineering, Korea University) ;
  • Park, Young-Ok (Climate Change Research Division, Korea Institute of Energy Research)
  • Received : 2018.02.27
  • Accepted : 2018.07.31
  • Published : 2018.11.30

Abstract

We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

Keywords

Acknowledgement

Supported by : Korea Evaluation Institute of Industrial Technology (KEIT)

References

  1. S. Mentus, Mater. Chem. Phys., 112, 254 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.043
  2. J. Szekely, C. I. Lin and H. Y. Sohn, Chem. Eng. Sci., 28, 1975 (1973). https://doi.org/10.1016/0009-2509(73)85042-0
  3. A. Ranzani Da Costa, D. Wagner and F. Patisson, J. Clean Prod., 46, 27 (2013). https://doi.org/10.1016/j.jclepro.2012.07.045
  4. B. Zhang, Z. Wang, X. Gong and Z. Guo, Powder Technol., 225, 1 (2012). https://doi.org/10.1016/j.powtec.2012.02.009
  5. G. Plascencia and T. Utigard, Chem. Eng. Sci., 64, 2879 (2009).
  6. A. Carlson, Energy Policy, 31, 951 (2003). https://doi.org/10.1016/S0301-4215(02)00138-6
  7. L. Barreto, A. Makihira and K. Riahi, Int. J. Hydrog. Energy, 28, 267 (2003). https://doi.org/10.1016/S0360-3199(02)00074-5
  8. J. Szekely and J. W. Evans, Metall. Mater. Trans., 2, 1699 (1971).
  9. M. J. Rhodes and D. Geldart, Powder Technol., 53, 155 (1987). https://doi.org/10.1016/0032-5910(87)80089-X
  10. A. W. Pacek and A. W. Nienow, Powder Technol., 60, 145 (1990). https://doi.org/10.1016/0032-5910(90)80139-P
  11. Y. Iida and K. Shimada, Bull. Chem. Soc. Japan, 33, 8 (1960). https://doi.org/10.1246/bcsj.33.8
  12. T. A. Utigard, M. Wu and G. Plascencia, Chem. Eng. Sci., 60, 2061 (2005). https://doi.org/10.1016/j.ces.2004.11.024
  13. J. Li, G. Luo and W. Fei, Powder Technol., 229, 152 (2012). https://doi.org/10.1016/j.powtec.2012.06.022
  14. D. Geldart, Powder Technol., 7, 285 (1973). https://doi.org/10.1016/0032-5910(73)80037-3
  15. G. H. Qian, I. Bagyi, I. W. Burdick, R. Pfeffer, H. Shaw and J. G. Stevens, AIChE J., 47, 1022 (2001). https://doi.org/10.1002/aic.690470509
  16. D. Geldart, Gas Fluidization Technol., John Wiley & Sons (1986).
  17. J. Szekely, C. I. Lin and H. Y. Sohn, Chem. Eng. Sci., 28, 1975 (1973). https://doi.org/10.1016/0009-2509(73)85042-0
  18. D. Kunii and O. Levenspiel, Fluidization Engineering Second Edition, Butterworth-Heinemann (1991).
  19. J. R. Grace, T. M. Knowlton and A. A. Avidan, Eds. Circulating fluidized beds, Springer Science and Business Media (2012).
  20. J. V. Fletcher, M. D. Deo and F. V. Hanson, Powder Technol., 76, 141 (1993). https://doi.org/10.1016/S0032-5910(05)80021-X
  21. Y. Wu, Y. He, T. Wu, T. Chen, W. Weng and H. Wan, Mater. Lett., 61, 3174 (2007). https://doi.org/10.1016/j.matlet.2006.11.018
  22. B. Jankovic, B. Adnađevic and S. Mentus, Chem. Eng. Sci., 63, 567 (2008). https://doi.org/10.1016/j.ces.2007.09.043
  23. J. Li, X. Liu, L. Zhou, Q. Zhu and H. Li, Particuology, 19, 27 (2015). https://doi.org/10.1016/j.partic.2014.04.008

Cited by

  1. Fluidization of fine powder assisted by vertical vibration in fluidized bed reactor vol.36, pp.9, 2018, https://doi.org/10.1007/s11814-019-0339-2
  2. Modeling and experiment of gas desorption of bubble column with an external loop in the heterogeneous flow regime vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0368-x
  3. 순환유동층 보일러 로내 탈황을 위한 석회석 평가 vol.57, pp.6, 2018, https://doi.org/10.9713/kcer.2019.57.6.853
  4. Agglomeration of nickel oxide particle during hydrogen reduction at high temperature in a fluidized bed reactor vol.168, pp.None, 2018, https://doi.org/10.1016/j.cherd.2021.02.005