• Title/Summary/Keyword: Nickel oxide film

Search Result 74, Processing Time 0.201 seconds

Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

  • Chaudhry, A.U.;Mittal, Vikas;Mishra, Brajendra
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • The aim of this study was to evaluate the use of iron-nickel oxide ($Fe_2O_3$.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.

Chemical Solution Deposition of PZT/Oxide Electrode Thin Film Capacitors and Their Micro-patterning by using SAM

  • Suzuki, Hisao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.907-912
    • /
    • 2005
  • Micro-patterns of $Pb(Zr_{0.53}Ti_{0.47})O_3$, PZT, thin films with a MPB composition were deposited on $Pt/Ti/SiO_2/Si$ substrate from molecular-designed PZT precursor solution by using self-assembledmonolayer(SAM) as a template. This method includes deposition of SAM followed by the optical etching by exposing the SAM to the UV-light, leading to the patterned SAM as a selective deposition template. The pattern of SAM was formed by irradiating UV-light to the SAM on a substrate and/or patterned PZT thin film through a metal mask for the selective deposition of patterned PZT or lanthanum nickel oxide (LNO) precursor films from alkoxide-based precursor solutions. As a result, patterned ferroelectric PZT and PZT/LNO thin film capacitors with good electrical properties in micrometer size could be successfully deposited.

  • PDF

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate (스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절)

  • JI, SANGHOON;JANG, CHOON-MAN;JUNG, WOOCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.434-441
    • /
    • 2018
  • The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.

A Study on the Removal Characteristics of a Radioactively Contaminated Oxide Film from the irradiated Stainless Steel Surface using Short Pulsed Laser Ablation (초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성)

  • Kim, Geun-Woo;Yoon, Sung-Sik;Kim, Ki-Chul;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.105-110
    • /
    • 2020
  • Radioactive Oxides are formed on the surface of the primary equipment in a nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the equipment, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce production of the secondary radioactive wastes. They were also used to minimize the damages that were caused on the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Further, the laser source was selected with two different wavelengths. Furthermore, the depth of the coating layer was analyzed using a 3D laser microscope by changing the laser ablation conditions. Based on the analysis, the optimal conditions of ablation were determined using a 1064nm short-pulsed laser ablation technique in order to remove the radioactively contaminated oxide film from the irradiated stainless steel surface.

RF Sputtered Lithium Nickel Oxide Films and Their Electrochromism (RF 스퍼터링에 의해 제조된 Li-Ni-O 박막의 전기변색 특성)

  • Kim, Young-Il;Kim, Bae-Whan;Choy, Jin-Ho;Campet, Guy;Park, Nam-Gyu;Portier, Josik;Morel, Bertrand
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.594-599
    • /
    • 1997
  • Lithium nickel oxide ($Li_{2x}Ni_{1-x}O$) thin films have been prepared by the RF sputtering of lithiated nickel oxide target, where the film microstructure was controlled by the sputtering atmosphere $(Ar/O_2)$ and the substrate temperature ($T_s=50/230^{\circ}C$). From the transmission electron microscopic analysis, it is found that the most porous film with the grain size of $∼80\AA$ could be fabricated under the sputtering atmosphere of $P(O_2)=8{\times}10^2$ mbar with the $$T_s$=50^{\circ}C.$ In the optical and electrochemical studies, the$Li_{2x}Ni_{1-x}O$ films exhibit a significant electrochromic property in association with the lithium insertion/deinsertion process. The amount of charge insertion ($Q_i$) and the optical density (OD) variation depend on the crystallinity of the film as well as its thickness, and for the $Li_{2x}Ni_{1-x}O$ film (170 nm thickness) prepared under $O_2$ atmosphere and $T_s=50^{\circ}C$, the OD could be increased up to ∼1.3 by the charge insertion with $Q_i=30\;mC/cm^2.$

  • PDF

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions

  • An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.187-189
    • /
    • 2015
  • A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.

Comparison of chemical resistance properties of anodized film according to anodized sealing treatment method of Al6061 alloy (Al6061 합금의 양극산화 봉공 처리 방법에 따른 양극산화 피막의 내화학 특성 비교)

  • Young Uk Han;Sang Sub Lee;Jun Seok Lee;Gibum Jang;Sung Youl Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.201-207
    • /
    • 2024
  • This study compared the chemical resistance properties according to various sealing treatment methods for the anode film formed during the anodization process of Al6061 alloy. Al6061 aluminum was used in four different sealing treatment methods: boiling water sealing, lithium sealing, nickel sealing, and pressurized sealing, and each sample was evaluated for corrosion resistance through a 5% HCl bubble test and the microstructure was observed through a scanning electron microscope(SEM). According to the results, corrosion resistance increased as time and temperature increased in all sealing treatment methods. Relatively, corrosion resistance was high in the order of boiling water sealing, lithium sealing, nickel sealing, and pressure sealing, and the best corrosion resistance was found in pressure sealing. These research results can be helpful in selecting a process necessary to improve the efficiency and performance of anodizing process in the industrial field using aluminum alloys.

A Study on the Liquid Crystal Orientation Characteristics of the Inorganic NiOx Film with Aligned Nanopattern Using Imprinting Process (무기막 NiOx의 정렬 패턴 전사를 이용한 액정의 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.357-360
    • /
    • 2019
  • We demonstrate an alignment technology using an imprinting process on an inorganic NiOx film. The aligned nanopattern was fabricated on a silicon wafer by laser interference lithography. The aligned nano pattern was then imprinted onto the sol-gel driven NiOx film using an imprinting process at an annealing temperature of $150^{\circ}C$. After the imprinting process, parallel grooves had been formed on the NiOx film. Atomic force microscopy and water contact angle measurements were performed to confirm the parallel groove on the NiOx film. The grooves caused liquid crystal alignment through geometric restriction, similar to grooves formed by the rubbing process on polyimide. The liquid crystal cell exhibited a pretilt angle of $0.2^{\circ}$, which demonstrated homogeneous alignment.