Browse > Article
http://dx.doi.org/10.14773/cst.2016.15.1.13

Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl  

Chaudhry, A.U. (Department of Metallurgical & Materials Engineering, Colorado School of Mines)
Mittal, Vikas (Department of Chemical Engineering, The Petroleum Institute)
Mishra, Brajendra (Department of Metallurgical & Materials Engineering, Colorado School of Mines)
Publication Information
Corrosion Science and Technology / v.15, no.1, 2016 , pp. 13-17 More about this Journal
Abstract
The aim of this study was to evaluate the use of iron-nickel oxide ($Fe_2O_3$.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.
Keywords
bode; neutral; corrosion; inductive; nyquist;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. R. Bagherzadeh and F. Mahdavi, Prog. Org. Coat., 60, 117 (2007).   DOI
2 P. P. Mahulikar, R. S. Jadhav, and D. G. Hundiwale, Iran. Polym. J., 20, 367 (2011).
3 K.-C. Chang, W.-F. Ji, M.-C. Lai, Y.-R. Hsiao, C.-H. Hsu, T.-L. Chuang, Y. Wei, J.-M. Yeh, and W.-R. Liu, Polym. Chem., 5, 1049 (2014).   DOI
4 C. M. Santos, K. Milagros Cui, F. Ahmed, M. C. R. Tria, R. A. M. V. Vergara, A. C. de Leon, R. C. Advincula, and D. F. Rodrigues, Macromol. Mater. Eng., 297, 807 (2012).   DOI
5 A. Kalendova, Prog. Org. Coat., 38, 199 (2000).   DOI
6 A. Amirudin, C. Barreau, R. Hellouin, and D. Thierry, Prog. Org. Coat., 25, 339 (1995).   DOI
7 M. J. Pryor, J. Electrochem. Soc., 101, 141 (1954).   DOI
8 M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 2nd English ed., Natl. Assoc. of Corrosion Engineers, Houston, TX (1974).
9 G. N. Mu, T. P. Zhao, M. Liu, and T. Gu, Corrosion, 52, 853(1996).   DOI
10 S. Sathiyanarayanan, C. Jeyaprabha, S. Muralidharan, and G. Venkatachari, Appl. Surf. Sci., 252, 8107 (2006).   DOI
11 D. M. Drazic and L. Ž. Vorkapic, Corros. Sci., 18, 907 (1978).   DOI
12 R. A. Covert and H. H. Uhlig, J. Electrochem. Soc., 104, 537 (1957).   DOI
13 A. D. McQuillan and M. K. McQuillan, Titanium, Butterworths Scientific Publications, London (1956).
14 D. Schlain and J. S. Smatko, J. Electrochem. Soc., 99, 417 (1952).   DOI
15 M. Rey, P. Coheur, and H. Herbiet, Trans. Electrochem. Soc., 73, 315 (1938).   DOI
16 H. Leidheiser, Corrosion, 36, 339 (1980).   DOI
17 I. M. Zin, J. Mater. Sci., 36, 450 (2000).   DOI
18 J. L. Mora-Mendoza and S. Turgoose, Corros. Sci., 44, 1223 (2002).   DOI
19 A. U. Chaudhry, V. Mittal, and B. Mishra, Mater. Chem. Phys., 163, 130 (2015).   DOI
20 A. Bonnel, F. Dabosi, C. Deslouis, M. Duprat, M. Keddam, and B. Tribollet, J. Electrochem. Soc., 130, 753 (1983).   DOI
21 S. L. d. Assis, S. Wolynec, and I. Costa, Electrochim. Acta, 51, 1815 (2006).   DOI
22 C. Chen and F. Mansfeld, Corros. Sci., 39, 409 (1997).   DOI
23 A. Miszczyk and K. Darowicki, Anti-Corros. Method. M., 58, 13 (2011).   DOI
24 U. R. Evans, The corrosion and oxidation of metals: scientific principles and practical application, Edward Arnold, London (1960).