• Title/Summary/Keyword: NiFe magnetic core

Search Result 35, Processing Time 0.049 seconds

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire (전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화)

  • Yoon, Seok Soo;Cho, Seong Eon;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • The model for the magneto-impedance of composite wires composed of highly conductive nonmagnetic metal core and soft magnetic shell was derived based on the Maxwell's equations. The Cu($100{\mu}m$ diameter)/$Ni_{80}Fe_{20}$($15{\mu}m$ thickness) core/shell composite wire was fabricated by electrodeposition. The impedance spectra for the $Cu/Ni_{80}Fe_{20}$ core/shell composite wire were measured in the frequency range of 10 kHz~10 MHz under longitudinal dc magnetic field in 0 Oe~200 Oe. The spectra of complex permeability in circumferential direction were extracted from the impedance spectra by using the derived model. The extracted spectra of complex permeability showed relaxation-type dispersion which is well curve-fitted with Debye equation with single relaxation frequency. By analyzing the magnetic field dependence of the complex permeability spectra, it has been verified that the composite wire has magnetic anisotropy in longitudinal direction and the origin of the single relaxation process is the magnetization rotation in circumferential direction.

The Enhanced Off-Diagonal Magneto-Impedance Effect in Cu/Ni80Fe20 Core-Shell Composite Wires Fabricated by Electrodeposition under Torsional Strain (비틀림 스트레인 하에서 전기도금으로 만든 Cu 코어/Ni80Fe20 쉘 복합 와이어에서 비대각 자기임피던스(Off-diagonal Magneto-Impedance) 효과의 증대)

  • Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • The magneto-impedance effect (MI effect) has been investigated in metal core/soft magnetic shell composite wires fabricated by electrodeposition of $Ni_{80}Fe_{20}$ on Cu wire (diameter $190{\mu}m$). The diagonal impedances $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in cylindrical coordinate showed strong MI effect for the magnetic field applied along z-axis, while the off-diagonal impedance $Z_{{\theta}z}$ showed very weak MI effect. We have tried to develop the Cu $core/Ni_{80}Fe_{20}$ shell composite wire having strong MI effect in off-diagonal impedance by electrodeposion under torsional strain. The core/shell composite wire electrodeposited under torsional angles above $270^{\circ}$ showed significantly enhanced MI effect in the off-diagonal impedance. The maximum MI effect was observed in the composite wire electrodeposited under torsional angle of $360^{\circ}$. The developed method to enhance off-diagonal MI effect is expected to increase the applicability of the core/shell composite wire to magnetic sensor material.

High Nitrogen Steel for Core of Over-head Transmission Line (가공송전선 코아용 고질소강 연구)

  • Kim, Bong-Seo;Yoo, Kyung-Jae;Kwon, Hae-Woong;Lee, Hee-Woong;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1555-1557
    • /
    • 1998
  • In order to investigate the core material for over-head transmission line with non-magnetic and high strength nitrogen steel, microstructure and several basic properties of Fe-Mn-Cr-Ni-N steel have been studied. It is necessary that core material have a $\gamma$ phase to have a non-magnetic characteristics. To acquire a $\gamma$ phase, Mn, Ni and C are added as a alloying element. It was found that Fe-25Mn-16Cr-1Ni-N alloy have a stable $\gamma$ phase. The precipitate from this alloy system was $(Cr, Fe)_7C_3$. High Mn and N steel satisfies Sievert's relation that solubility of nitrogen increases with the square root of partial pressure of gas in metal-gas system and the hardness have proportional relation with nitrogen concentration.

  • PDF

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

Effects of Magnetic Characteristics on Coefficient of Thermal Expansion in Fe-Ni-Co-C Invar Alloy for Transmission Line (송전선 강심용 Fe-Ni-Co-C 합금의 열팽창계수에 미치는 자기적 특석의 영향)

  • Kim, Bong-Seo;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1346-1348
    • /
    • 2001
  • Generally, Invar alloy shows very low thermal expansion characteristics, lower than $2{\times}10^{-6}$/K approximately. To apply Fe-Ni-Co-C Invar alloy as a core material for large ampacity transmission line we studied the effects of magnetic properties on coefficient of thermal expansion. The coefficient of thermal expansion(CTE) suddenly decreases with addition of a little carbon(0.08%), increases with the increasing carbon and has a constant value at the composition over than 1.0%C. The trend of Curie temperature change with carbon is similar with that of CTE. Therefore, the CTE has a linear relationship with Curie temperature. However, the CTE linearly decreases with the ratio of saturation magnetization and Curie temperature(${\sigma}_s/T_c$).

  • PDF

Diagonal Magneto-impedance in Cu/Ni80Fe20 Core-Shell Composite Wire (Cu/Ni80Fe20 코어/쉘 복합 와이어에서 대각(Diagnonal) 자기임피던스)

  • Cho, Seong Eon;Goo, Tae Jun;Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • The Cu(radius ra = $95{\mu}m$)/$Ni_{80}Fe_{20}$(outer radius $r_b$ = $120{\mu}m$) core/shell composite wire is fabricated by electrodeposition. The two diagonal components of impedance tensor for the Cu/$Ni_{80}Fe_{20}$ core/shell composite wire in cylindrical coordinates, $Z_{zz}$ and $Z_{{\theta}{\theta}}$, are measured as a function of frequency in 10 kHz~10 MHz and external static magnetic field in 0 Oe~200 Oe. The equations expressing the diagonal $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in terms of diagonal components of complex permeability tensor, ${\mu}^*_{zz}$ and ${\mu}^*_{{\theta}{\theta}}$, are derived from Maxwell's equations. The real and imaginary parts of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra are extracted from the measured $Z_{zz}$(f) and $Z_{{\theta}{\theta}}$(f) spectra, respectively. It is presened that the extraction of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra from the diagonal impedance spectra can be a versatile tool to investigate dymanic magnetization process in the core/shell composite wire.

Soft Magnetic Properties of Annealed Co-Based Amorphous Co66Fe4Ni1B15Si14 Alloy Ribbon

  • Yang, J.S.;Cho, Y.;Son, D.;Ryu, K.S.
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.130-134
    • /
    • 1997
  • The amorphous Co-based alloy Co66Fe4Ni1B15Si14 (Metglas 2714A) is a suitable magnetic core material for high frequency operation. Appreciable reduction of the coercive force can be achieved by proper heat treatment. In this study, samples annealed at wide temperature range were analyzed using differential scanning calorimetry, high frequency B-H loop tester, X-ray diffractometer and resistivity meter. The results show that coercive force at 10 kHz decreases with in-creasing annealing temperature up to 773 K, but dramatically increases above this temperature. The squareness shows that the magnetic anisotropy on longitudinal direction of the as-cast state remains up to 773 K. Above this temperature, it decreases down to 0.5 that represents random distribution of magnetic domains. The crystallization abruptly occurs between 781 K and 783 K.

  • PDF

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.