Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.4.135

The Enhanced Off-Diagonal Magneto-Impedance Effect in Cu/Ni80Fe20 Core-Shell Composite Wires Fabricated by Electrodeposition under Torsional Strain  

Kim, Dong Young (Department of Physics, Andong National University)
Yoon, Seok Soo (Department of Physics, Andong National University)
Lee, Sang Hun (Department of Radiological Science, Kaya University)
Abstract
The magneto-impedance effect (MI effect) has been investigated in metal core/soft magnetic shell composite wires fabricated by electrodeposition of $Ni_{80}Fe_{20}$ on Cu wire (diameter $190{\mu}m$). The diagonal impedances $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in cylindrical coordinate showed strong MI effect for the magnetic field applied along z-axis, while the off-diagonal impedance $Z_{{\theta}z}$ showed very weak MI effect. We have tried to develop the Cu $core/Ni_{80}Fe_{20}$ shell composite wire having strong MI effect in off-diagonal impedance by electrodeposion under torsional strain. The core/shell composite wire electrodeposited under torsional angles above $270^{\circ}$ showed significantly enhanced MI effect in the off-diagonal impedance. The maximum MI effect was observed in the composite wire electrodeposited under torsional angle of $360^{\circ}$. The developed method to enhance off-diagonal MI effect is expected to increase the applicability of the core/shell composite wire to magnetic sensor material.
Keywords
magneto-impedance effect; impedance tensor; metal core/soft magnetic shell composite wire; electrodeposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Uchiyama, K. Mohri, Y. Honkura, and L. V. Panina, IEEE Trans. Magn. 48, 3833 (2012).   DOI
2 http://www.aichi-mi.com.
3 http://www.rohm.co.kr/web/korea/news-detail?news-title=2015-07-02_ad_mi&defaultGroupId.
4 P. Kollu, S. S. Yoon, G. W. Kim, C. S. Angani, and C. G. Kim, J. Magn. 15, 194 (2010).   DOI
5 A. F. Cobeno, A. Zhukov, J. M. Blanco, V. Larin, and J. Gonzalez, Sens. Act. A 91, 95 (2001).   DOI
6 M. H. Phan, H. X. Peng, M. T. Tung, N. V. Dung, and N. H. Nghi, J. Magn. Magn. Mater. 316, 244 (2007).   DOI
7 M. H. Phan and H. X. Peng, Prog. Mater. Sci. 53, 323 (2008).   DOI
8 L. Chen, Y. Zhou, C. Lei, and Z. M. Zhou, Mater. Sci. Eng. B 172, 101 (2010).   DOI
9 M. A. Correa, F. Bohn, V. M. Escobar, M. S. Marques, A. D. C. Viegas, L. F. Schelp, and R. L. Sommer, J. Appl. Phys. 110, 093914 (2011).   DOI
10 A. C. Mishra, T. Sahoo, V. Srinivas, and A. K. Thakur, Physica B: Condens. Matter. 406, 645 (2011).   DOI
11 D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, Nano-Micro Lett. 6, 227 (2014).   DOI
12 S. E. Cho, T. J. Goo, D. Y. Kim, S. S. Yoon, and S. H. Lee, J. Korean Magn. Soc. 25, 129 (2015).   DOI
13 S. E. Cho, Ph.D thesis, Andong National University, Korea (2015).