DOI QR코드

DOI QR Code

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, H.M. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, G.J. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Rhee, C.K. (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • Published : 2009.06.30

Abstract

Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

Keywords

References

  1. H. Morrish and K. Haneda, J. Appl. Phys. 52, 2496 (1981). https://doi.org/10.1063/1.328979
  2. J. Fang, N. Shama, L. D. Tung, E. Y. Shin, and A. J. O'Connor, J. Appl. Phys. 93, 7483 (2003). https://doi.org/10.1063/1.1555394
  3. Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, and K. Yasui, Thin Solid Film 407, 109 (2002). https://doi.org/10.1016/S0040-6090(02)00021-4
  4. K. V. P. M. Shafi, Y. Koltypin, and A. Gedanken, J. Phys. Chem. B 101, 6409 (1997). https://doi.org/10.1021/jp970893q
  5. Y. Shi, J. Ding, and X. Liu, J. Magn. Magm. Mater. 205, 249 (1999). https://doi.org/10.1016/S0304-8853(99)00504-1
  6. Y. R. Uhm, W. W. Kim, and C. K. Rhee, Phys. Stat. Sol. A 201, 1934 (2004). https://doi.org/10.1002/pssa.200304560
  7. Y. R. Uhm, J. H. Park, W. W. Kim, C.-H. Cho, and C. K. Rhee, Mater, Sci. Eng. B 106, 224 (2004). https://doi.org/10.1016/j.mseb.2003.08.057
  8. Y. R. Uhm, W. W. Kim, C. K. Rhee, S. J. Kim, and C. S. Kim, J. Appl. Phys. 93, 7196 (2003). https://doi.org/10.1063/1.1558234
  9. Y. R. Uhm, B. S. Han, M. K. Lee, S. J. Hong, and C. K. Rhee, Mater, Sci. Eng. A 449-451, 813 (2007). https://doi.org/10.1016/j.msea.2006.02.427
  10. Y. R. Uhm and C. S. Kim, J. Appl. Phys. 89, 7344 (2001). https://doi.org/10.1063/1.1361265
  11. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972)
  12. A. Ye, Yermakov, M. A. Uimin, A. A. Mysik, A. Yu, korobeinikov, A. V. Korolyov, N. V. Mushnikov, T. Goto, V. S. Gavoko, and N. N. Schegoleva, Mater. Sci. Forum, 386-388, 455 (2002). https://doi.org/10.4028/www.scientific.net/MSF.386-388.455
  13. X. N. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, I. Nowik, Yu. Koltypin, and A. Gedanken, J. Appl. Phys. 91, 4611 (2002). https://doi.org/10.1063/1.1457544
  14. A. A. Novakova, V. Yu. Lanchinskaya, A. V. Volkov, T. S. Gendler, T. Yu. Kiseleva, M. A. Moskvina, and S. B. Zezin, J. Magn. Magn. Mater. 258-259, 354 (2003). https://doi.org/10.1016/S0304-8853(02)01062-4
  15. R. M. Cornell and U. Schwertmann, The Iron Oxides, (Wiley-VCH, Weinheim, 1996)
  16. H. Falcón, R. E. Carbonio, and J. L. G. Fierro, J. Catal. 203, 264 (2001). https://doi.org/10.1006/jcat.2001.3351

Cited by

  1. Magnetic Properties of R-YIG (R = La, Nd, and Gd) Derived by a Sol-gel Method vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.303