• Title/Summary/Keyword: NiFe

Search Result 2,504, Processing Time 0.031 seconds

Magnetoelectric Characteristics on Layered Ni-PZT-Ni, Co, Fe Composites for Magnetic Field Sensor (자기센서용 Ni-PZT-Ni, Co, Fe 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range. The ME coefficient of Ni-PZT-Ni, Ni-PZT-Co and Ni-PZT-Fe composites reaches a maximum of $200mV/cm{\cdot}Oe$ at $H_{dc}=110$ Oe, $106mV/cm{\cdot}Oe$ at $H_{dc}=90$ Oe and $87mV/cm{\cdot}Oe$ at $H_{dc}=160$ Oe, respectively. A trend of ME charateristics on Ni-PZT-Co, Ni-PZT-Fe composites was similar to that of Ni-PZT-Ni composites. The ME output voltage shows linearly proportional to ac field $H_{ac}$ and is about 0~150 mV at $H_{ac}$=0~7 Oe and f=110 Hz in the typical Ni-PZT-Ni sample. The frequency shift effect due to the load resistance $R_L$ shows that the frequency range for magnetic field sensor application can be modulated with appropriate load resistance $R_L$. This sample will allow for a low-magnetic ac field sensor in the low-frequency (near f=110 Hz).

Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production (수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석)

  • Lee, Yu-Jin;An, Geon-Hyoung;Park, Man-Ho;Lee, Chang-Woo;Choi, Sang-Hyun;Jung, Ju-Yong;Jo, Sung-Jong;Lee, Kun-Jae;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.

Effect of Fe7W6 Phase (μ-phase) on Mechanical Properties of W-Ni-Fe Heavy Alloy (W-Ni-Fe 중합금의 기계적 특성에 미치는 Fe7W6상(μ-phase)의 영향)

  • Jeon, Yong Jin;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.720-725
    • /
    • 2011
  • W-Ni-Fe heavy alloys have been used in various fields, such as kinetic energy penetrators and radiation shielding materials, due to their high density and good mechanical properties. In this study, the sintering of W-Ni-Fe alloys with various Ni/Fe ratios was demonstrated to improve the mechanical properties and penetration capabilities of heavy alloys by formation of interfacial phase. The microstructural changes and the mechanical properties of the W-Ni-Fe alloys after liquid-phase sintering were investigated. The Vickers hardness and tensile strength of the 95W1.3Ni3.7Fe sample, which had coated W grains by $Fe_7W_6$ phase (${\mu}$-phase), were 450 Hv and 1560 MPa, respectively. As a result, enhancement of the mechanical properties was considered to have uniformly generated ${\mu}$-phase around W grains.

Magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) Alloys: A First-principles Study (B2 구조 FeX(X = Al, Si, Ni, Ga, Ge, Sn) 합금의 자기변형에 대한 제일원리계산)

  • Lee, Sunchul;Odkhuu, Dorj;Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.117-121
    • /
    • 2013
  • In this study we investigated magnetism and magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) using a first-principles method, in order to survey the possibility of developing a transition metal based magnetostriction material. The Full-potential Linearized Augmented Plane Wave method was employed for solving the Kohn-Sham equation within the generalized gradient approximation for exchange-correlation interaction between electrons. FeX alloys are stabilized in ferromagnetic states except for the FeSi and FeGe alloys. Magnetostrcition coefficients of FeX (X = Al, Ni, Ga, and Sn) were calculated to be -5, +6, -84, -522ppm, respectively. It is noteworthy that the magnetostriction coefficient (-522ppm) of FeSn is larger than that (+400ppm) of Gafenol.

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors (자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성)

  • Oh, Young Woo;Ahn, Jong Gyeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

Study on Thermal Stability of Ni-P-Fe and Ni-P-B Layers Electroplated on Alloy 600 (Alloy 600에 전기 도금한 Ni-P-Fe 및 Ni-P-B 층의 열적 안정성 연구)

  • Kim, Myong-Jin;Kim, Joung-Soo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • In this study, thermal stability of the mechanical properties of Ni-P-B and Ni-P-Fe layers electroplated on Alloy 600 material was evaluated by measuring their microhardness, tensile strength, and elongation after heat treatment at $325^{\circ}C$ and $400^{\circ}C$. According to the results, there was no noticeable change in microhardness of the two electrodeposits before and after heat treatment at the temperatures for 30 days. In the case of a Ni-P-B electrodeposit, ultimate tensile strength (UTS) slightly increases with heat treatment time, while its elongation decreases, showing good thermal stability in the mechanical properties at high temperature. On the other hand, UTS and elongation of Ni-P-Fe decrease with heat treatment time, which is very unusual observation. This result was attributed to the bad microstructure of Ni-P-Fe having many defects in the deposit formed early stage of an electroplating process and their redistribution to link to become large ones during heat treatment.

Fabrication and Electromagnetic Properties of $Ni_{81}$$Fe_{19}$ Thin Films ($Ni_{81}$$Fe_{19}$ 박막의 제조와 전자기특성)

  • 이원재;백성관;민복기;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1032-1038
    • /
    • 2000
  • Ni$_{81}$$Fe_{19}$(200 nm) thin films have been deposited by RF-magnetron sputtering on Si(001) substrates, Atomic force microscopy(AFM), X-ray diffraction(XRD) and magnetoresistance(MR) measurements of the thin films for investigating electromagnetic properties and microstructures were employed. During field annelaing for 1hr, there was no big difference n XRD patterns of Ni$_{81}$$Fe_{19}$ thin films. However, there was a significant change in XRD patterns of Ni$_{81}$$Fe_{19}$ thin films deposited at 40$0^{\circ}C$ during in-situ magnetic field deposition. The degree of surface roughness increased with increasing annealing and deposition temperature. With variation of surface roughness, there was no significant difference in MR Characteristics of Ni$_{18}$ $Fe_{19}$ thin films in 1hr-annealed case. High MR ratio was observed in the case of in-situ field deposited Ni$_{81}$$Fe_{19}$ films. 19/ films.

  • PDF