• 제목/요약/키워드: NiFe

검색결과 2,500건 처리시간 0.03초

웅황과 자황의 소화 반응과 인체내 존재형태에 대한 예측 모델링 (Gastric juice and Realgar and Orpiment Mineral Medicine Reaction; Reaction Path and Speciation Modeling in Human Body)

  • 김선옥;박맹언;신순식;김경철
    • 동의생리병리학회지
    • /
    • 제16권2호
    • /
    • pp.365-372
    • /
    • 2002
  • The mineral medicines mean a sort of mineral or rock for medical treatment and natural material using their chemical components and physical properties. In this study, it was apprehended the mineralogical characteristics of As-bearing group mineral medicines. The extraction test is an vitro test system for predicting the bioavailability of the major and minor elements from mineral medicines and incorporates gastrointestinal tract parameters representative of a human(including stomach and small intestinal pH, stomach mixing time and velocity). The results of the extraction test are used for reaction path modeling in human body. Reaction path modeling in human body can predict digestion with gastric juice as well as bioavailability, speciation. Also, it can predict accumulation of arsenic as pH condition. As the results of the extraction test for digestion, the amounts of Fe extraction was the highest, followed by As, Ca, Ni. In addition, as the results of the reaction path modeling between arsenic compounds and gastric juice using thermodynamic data, when absorbed, major species are followed by H₃As₃S/sub 6/(aq), As₃S/sub 6/ (aq), AsO/sup +/, H₂As₃S/sup 6-/, H₂AsO/sup 3-/, HAs₃S6/sup 2-/, HAsO/sub 3//sup 2-/ and AsO/sub 3//sup 3-/. Specifically the concentration of H₃As₃S/sub 6/(aq) is the highest. As pH increases, the concentration of H₂AsO/sup 3-/, HAsO/sub 3//sup 2-/, HAsO/sub 3//sup 3-/, HAs₃S/sub 6//sup 2-/, H₂As₃S/sup 6-/, and H₃As₃S/sub 6/ increases, whereas the concentration of H₃As₃S/sub 6/ and AsO/sup +/ decreases. On the results of this study, it is able to find out effective and toxic components of poisonous arsenic group of mineral medicines and expected to be widely used for the development of new medicines.

일반대기 중 극미세입자와 중금속 농도에 관한 연구 (A Study on the Size of Ultrafine Particles and Heavy Metal Concentrations in the Atmosphere)

  • 조태진;전혜리;윤형선;이미영;손부순
    • 한국환경보건학회지
    • /
    • 제36권6호
    • /
    • pp.480-495
    • /
    • 2010
  • This study evaluated the distribution of the concentrations of nano-particles and heavy metals (08-Pb, Cr, Zn, As, Fe, 09-Pb, Cr, Zn, Cu, Ni, Mn) in Seoul, Chungnam A and Gwangyang from August to December, in 2008 5 times each in the Seoul area, 5 times in and Chungnam A area and from August to November, in 2009 14 times in the Chungnam A area, 8 times in the Gwangyang area. The examined results showed high concentration level from $PM_1$ through $PM_{0.1}$ in all three areas. These results were obtained the concentration of particles by diameter and statistically significant in Stage5 (1.0-0.56 ${\mu}m$) from the result of conducting Kruskal-Wallis H test (p < 0.05). In the case of the heavy metal concentration included in 0.10-0.056 ${\mu}m$, 0.056 ${\mu}m$, the lead concentration of Chungnam Asan area was 6.49 ng/$m^3$ and 9.93 ng/$m^3$, which was higher than 3.05 ng/$m^3$ and 4.22 ng/$m^3$ of Seoul, respectively. The concentration of iron in Seoul was 9.28 ng/$m^3$ and 13.24 ng/$m^3$, that appeared higher than 2.38 ng/$m^3$ and 3.23 ng/$m^3$ of Chungnam A area, respectively. The concentration level was similar to other metals except lead and iron in Chungnam A area and Seoul. From the concentration of heavy metal included in 0.10-0.056 ${\mu}m$, 0.056 ${\mu}m$, the lead concentration of Chungnam A area was 0.31 ng/$m^3$ and 0.12 ng/$m^3$ while Gwangyang was 0.28 ng/$m^3$, 0.06 ng/$m^3$. Thus Chungnam A area showed higher lead concentration than Gwangyang. The manganese concentration of Chungnam A area was 0.12 ng/$m^3$ and 0.03 ng/$m^3$ while Gwangyang was 0.21 ng/$m^3$ and 0.08 ng/$m^3$. Therefore, the concentration of Gwangyang appeared higher than that of Chunnam A area. These two metals showed statistically significant in 0.056 ${\mu}m$ (p < 0.05, p < 0.01). Among the concentration of heavy metal in all regions, the result demonstrated that the order of higher concentration is arsenic > iron > zinc > chrome > lead > nickel > copper > manganese.

탄광부 진폐증자의 폐조직내 금속농도 (Metal Concentrations in Lungs of Coal Workers' Pneumoconiosis Patients)

  • 최호춘;정호근;김해정;전향숙;이관형
    • 한국산업보건학회지
    • /
    • 제1권1호
    • /
    • pp.89-99
    • /
    • 1991
  • The metal concentrations in lungs from 12 coal workers' pneumoconiosis(CWP) patients and 6 controls, who were not exposed occupationally to coal mine dust and metals during their life time, were analyzed by atomic absorption spectrophotometry. 1. Copper, lead, nickel, magnesium, manganese, zinc and iron concentrations in lungs of CWP patients were $1.10{\pm}0.088$, $1.12{\pm}0.068$, $0.22{\pm}0.020$, $113.7{\pm}1.31$, $0.19{\pm}0.012$, $10.2{\pm}1.54$, $426.7{\pm}2.63{\mu}g/g$ wet weight. 2. Copper, lead, nickel, magnesium, manganese, zinc and iron concentrations in lungs of controls were $1.10{\pm}0.013$, $0.85{\pm}0.007$, $0.10{\pm}0.008$, $87.6{\pm}1.29$, $0.18{\pm}0.005$, $10.6{\pm}1.44$, $164.9{\pm}3.29{\mu}g/g$ wet weight. 3. The ratios of concentrations for copper, lead, nickel, magnesium, manganese, zinc, and iron in lungs for CWP patients and controls were 1 : 1, 1.32 : 1, 2.20 : 1, 1.30 : 1, 1.06 : 1, 0.92 : 1, 2.58 : 1, respectively. There were significant differences in concentrations of lead, nickel, magnesium, iron by group(p<0.05). 4. There was no significant difference in metal concentrations of right upper lobe, right lower lobe, left upper lobe and left lower lobe for both CWP patients and controls (p>0.05, p>0.05). 5. In CWP patients lead was well correlated with nickel showing a rank correlation coefficient of 0.533, and zinc was correlated with copper showing a rank correlation coefficient of 0.476. 6. The concentrations of copper, nickel, maganese, and zinc in Korean CWP patients were lower than those in foreign CWP patients.

  • PDF

PMF모델을 이용한 용인.수원 경계지역에서 PM10 오염원의 확인과 상대적 기여도의 추정 (Identification of Atmospheric PM10 Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Area by Using PMF)

  • 이형우;이태정;양성수;김동술
    • 한국대기환경학회지
    • /
    • 제24권4호
    • /
    • pp.439-454
    • /
    • 2008
  • The purpose of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions to the study area, based on the analysis of the $PM_{10}$ mass concentration and the associated inorganic elements, ions, and total carbon. The contribution of $PM_{10}$ sources was estimated by applying a receptor method because identifying air emission sources were effective way to control the ambient air quality. $PM_{10}$ particles were collected from May to November 2007 in the Yongin-Suwon bordering area. $PM_{10}$ samples were collected on quartz filters by a $PM_{10}$ high-volume air sampler. The inorganic elements (Al, Mn, V, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Ba, Ti and Ag) were analyzed by an ICP-AES after proper pre-treatments of each sample. The ionic components of these $PM_{10}$ samples ($Cl^_$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) were analyzed by an IC. The carbon components (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) were also analyzed by DRI/OGC analyzer. Source apportionment of $PM_{10}$ was performed using a positive matrix factorization (PMF) model. After performing PMF modeling, a total of 8 sources were identified and their contribution were estimated. Contributions from each emission source were as follows: 13.8% from oil combustion and industrial related source, 25.4% from soil source, 22.1% from secondary sulfate, 12.3% from secondary nitrate, 17.7% from auto emission including diesel (12.1%) and gasoline (5.6%), 3.1% from waste incineration and 5.6% from Na-rich source. This study provides information on the major sources affecting air quality in the receptor site, and therefore it will help us maintain and manage the ambient air quality in the Yongin-Suwon bordering area by establishing reliable control strategies for the related sources.

서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정 (Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station)

  • 박슬바센나;이태정;고현기;배성준;김신도;박덕신;손종렬;김동술
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

서해연안 패류의 성분원소 함량 및 퇴적물의 지화학적 특성 (Contents of Inorganic Elements in Shellfish and Geochemical Characteristics of Surface sediments on the West Coast of Korea)

  • 최윤석;송재희;박광재;윤상필;정상옥;안경호
    • 한국패류학회지
    • /
    • 제28권3호
    • /
    • pp.225-232
    • /
    • 2012
  • 갯벌어장에 서식하는 패류의 성분원소 함량 및 연안 생태계의 퇴적물의 지화학적 특성의 연관성을 조사하기 위하여 서해연안을 연구지역으로 선정하였다. 연구지역내 갯벌어장 표층퇴적물의 COD, AVS, IL의 지화학적특성은 다소 오염된 지역이 나타나지만 대부분 양식장 오염니 기준에 비하여 매우 낮은 농도를 보이며 패류의 성장에 영향이 적은 것으로 생각된다. 그리고 중금속에 대한 농축비(Ef) 와 농집지수 (Igeo) 의 결과는 연구지역이 오염원이 적은 자연적인 상태를 유지하여 서식하는 패류에 대한 오염이 적은 것으로 평가되었다. 또한 연구지역내에 서식하는 패류의 성분원소 함량을 분석한 결과에 따르면 퇴적물과 패류의 원소함유량의 상관관계는 연관성 있는 것으로 평가되었다. 패류의 무기원소 및 중금속의 농축은 Mn, Zn에 대해서만 상관관계가 반영되는 것으로 사료된다. 한편 갯벌어장의 패류 및 저서생물들이 서식하기에 좋은 조간대 퇴적물 상태를 유지하기 위하여 어장관리를 위한 중금속 오염에 대한 기준설정이 필요하며, 오염경로와 퇴적물의 오염원을 관리할 수 있는 체계적인 정책이 요구된다.

퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구 (Dispersion Method of Silica Nanopowders for Permalloy Composite Coating)

  • 박소연;정명원;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.39-42
    • /
    • 2011
  • 복합전기도금은 도금 중 반응성이 없는 물질을 첨가하여 도금층 내부에 함께 존재하도록 함으로써 이루어진다. 퍼멀로이는 철과 니켈의 합금을 말하는 것으로써 마모 특성과 내부식성이 우수하고 복합도금을 함으로써 도금층의 잔류응력 완화와 경도증가, 높은 투자율를 나타내기 때문에 산업 여러 분야에 응용된다. 복합도금을 통해 제품의 미세경도를 향상시킬 수 있으며 이는 제품의 수명과 연관된다. 하지만 실리카 나노분말 표면의 수산화기는 표면을 수분에 취약하게 만들고 이는 나노분말의 응집을 발생시켜 균일한 도금층의 형성을 어렵게 하는 요인이 된다. 본 연구에서는 실리카 나노분말의 zeta potential의 측정과 실리카 나노분말의 응집을 줄이기 위하여 전류밀도의 변화, 첨가제의 변화를 살펴보았다. 표면은 전류밀도 20 $mA/cm^2$에서 가장 효과적이었으며 이 때 실리카의 함량은 $50^{\circ}C$에서 9%로 확인되었다. 첨가제에 따라 표면 형상과 공석되는 실리카 나노입자의 함량 차이가 나타났다. 염기성 도금용액에서 sodium lauryl sulfate를 사용하였을 경우 표면이 매끄럽고 공석되는 실리카 나노분말의 양도 높았다.

조선업 용접작업장의 공기중 입자상물질 및 구성성분에 관한 연구 (An Evaluation on Airborne Particulate and It's Components in the Welding Workplace for the Ship Construction Industry)

  • 강용선;신중규;이송권;윤충식;임무혁;박만철;심상효
    • 한국산업보건학회지
    • /
    • 제17권3호
    • /
    • pp.245-253
    • /
    • 2007
  • This research was performed to evaluate the airborne personal concentration of hazardouse materials during the process of ship construction and surveyed from May 23 to June 30, 2007 in Kyungnam West Distirct, Korea. The subject was 94 ship construction workers exposed to welding fume and respirable particulate. The airborne concentrations of those were compared to Permissible Exposure Limit(PEL) from the Ministry of Labor in Korea. The airborne concentration of 23 samples(48.9%) of welding fumes was less than $5mg/m^3$, that of 16 (34.0%) was between 5 and $10mg/m^3$, and that of 8 (17.0%) was greater than $10mg/m^3$. The airborne concentration of 27 (57.4%) of respirable particulate masses was less than $5mg/m^3$ and the othere are greater than $5mg/m^3$. The welding fumes were identified containing the heavy metasl such as Fe, Mn, Zn, Mg, Ca, and Cu. The respirable particulates has similiar tendency with welding fumes in the component of heavy metals. But the concentration of Ca, Cu, Cr, and Ni turned out to be higher in welding fumes. Twenty (42.6%) of the 47 samples of welding fumes were exceeded PEL. In the heavy metals in welding fumes, ten (21.3%) of the 47 samples of Mn were exceeded PEL. Based on the results, the higher airborne hazardous materials were still exposed to wokers in ship construction process. It is suggested that the appropriate engineering control be applied to minimize the exposed cocnetration in ship building processes.

한국 연안산 방사무늬김(Porphyra yezoensis)의 일반성분 및 미네랄 함량 (Proximate Composition and Mineral Content of Laver Porphyra yezoensis from the Korean Coast)

  • 목종수;이태식;손광태;송기철;권지영;이가정;김지회
    • 한국수산과학회지
    • /
    • 제44권5호
    • /
    • pp.554-559
    • /
    • 2011
  • To measure the proximate composition and mineral content of laver Porphyra yezoensis, we collected 30 raw and 30 dried laver from the major production area of the south coast of Korea (Busan, Goheung, Haenam, Wando). The approximate composition of a 100 g edible portion of raw laver was $89.9{\pm}1.4$ g moisture, $3.7{\pm}1.0$ g protein, $0.5{\pm}0.2$ g lipids, $2.1{\pm}1.8$ g carbohydrate and $3.9{\pm}0.6$ g ash. The approximate composition of a 100 g portion of dried laver was $8.9{\pm}1.6$ g moisture, $31.5{\pm}6.5$ g protein, $1.9{\pm}0.3$ g lipids, $48.4{\pm}6.5$ g carbohydrate and $9.3{\pm}1.1$ g ash. No clear regional variation in laver composition was observed. The mineral content of laver was expressed as dry weight. The mean macro mineral content per 100 g portion of raw laver was (in descending order): K ($1,979{\pm}863.0$ mg), Na ($1,063.2{\pm}498.8$ mg), P ($658.7{\pm}101.8$ mg), Mg ($432.3{\pm}83.5$ mg) and Ca ($394.2{\pm}136.5$ mg). In comparison, the mean micro mineral content of raw laver was (in descending order): Fe ($243.72{\pm}154.75\;{\mu}g/g$), Zn ($72.76{\pm}30.61\;{\mu}g/g$), Mn ($41.53{\pm}15.33\;{\mu}g/g$), Cu ($4.16{\pm}1.66\;{\mu}g/g$) and Ni ($0.43{\pm}0.70\;{\mu}g/g$) No clear regional variation in the mineral content of laver was observed; however, raw laver contained a higher mineral content than dried laver.

남극 킹조지섬 마리안소만에서 침강 입자와 금속 플럭스의 계절 변화 (Seasonal Variations of Settling Particles and Metal Fluxes at a Nearshore Site of Marian Cove, King George Island, Antarctica)

  • 심정희;강영철;한명우;김동선;정호성;이상훈
    • Ocean and Polar Research
    • /
    • 제24권2호
    • /
    • pp.123-134
    • /
    • 2002
  • Seasonal variations of settling particles and metal fluxes were monitored at a nearshore site of Marian Cove, King Geroge Island, Antarctica from 28th February 1998 to 22nd January 2000. Near-bottom sediment traps were deployed at 30m water depth of the cove, and sampling bottles were recovered every month by SCUBA divers. Total particulate flux and metal concentrations were determined from the samples. Total particulate flux showed a distinct seasonality, high in austral summer and low in austral winter: the highest flux $(21.97g\;m^{-2}d^{-1})$ was found in February of 1999, and the lowest $(2.47g\;m^{-2}d^{-1})$ in September of 1998, when sea surface was frozen completely. Lithogenic particle flux accounted for 90% of the total flux, and showed a significantly negative correlation with the thickness of snow accumulation around the study site. It was suggested that the most of the lithogenic particles trapped in the bottles was transported by melt water stream from the surrounding land. Fluxes of Al, Fe, Ti, Mn, Zn, Cii, Co, Ni, Cr, Cd, and Pb showed similar seasonal variations with the total flux, and their averaged fluxes were 34000, 9000,960, 180, 13.8, 17.6, 3.0,2.1, 5.4, 0.02, and $1.5nmol\;m^{-2}d^{-1}$ respectively. Among the metals, Cu and Cd showed the most noticeable seasonal patterns. The Cd flux correlated positively with the fluxes of biogenic components while the Cu flux correlated with both the lithogenic and biogenic particle fluxes. The Cu flux peak in the late summer is likely related to a substantial amount of inflow of ice melt water laden with Cu-enriched lithogenic particles. On the other hands, the Cd flux peak in the early spring may be associated with the unusually early occurred phytoplankton bloom.