• 제목/요약/키워드: NiAl

검색결과 1,565건 처리시간 0.025초

급속응고된 Al81-(x+y)Si19NixCey 합금의 나노조직과 기계적 특성 (Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy)

  • 이태행;홍순직
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.406-414
    • /
    • 2003
  • In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.

Al-Si 합금에 Ni, Ce 첨가 효과와 압출온도의 영향 (The Effect of Ni, Ce Addition and Extrusion Temperature on Al-Si Alloy)

  • 이태행;홍순직
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.34-42
    • /
    • 2004
  • The effect of extrusion temperature on the microstructure and mechanical properties were studied in He-gas atomized $Al_{81-(x+y)}Si_{19}Ni_xCe_y$ alloy powders and their extruded bars using SEM, tensile testing and thermal expansion testing. The extruded bar of $Al_{73}Si_{19}Ni_7Ce_1$ alloy consists of a mixed structure in which fine Si particles with a particle size below 20∼500nm and very fine $Al_3Ni,\;Al_3Ce$ compounds with a particle size below 200nm are homogeneously dispersed in Al martix with a grain size below 500nm. With increasing extrusion temperature, the microstructural scale was decreased. The ultimate tensile strength of the alloy bars has incresed with decreasing extrusion temperature from 500 to 35$0^{\circ}C$ and $Al_{73}Si_{19}Ni_7Ce_1$ alloy extreded at 35$0^{\circ}C$ shows a highest tensile strength of 810 MPa due to the fine namostructure. The addition of Ni and Ce decreased the coefficients of thermal expansion and the effects of extression temperature on the thermal expansion were not significant.

${Ni_3}Al-{Ni_3}V$ 준이원계 합금 포함 삼원계 시스템에서의 meso-scale 미세구조의 전산 모사에 관한 연구 (A computer simulation of the peso-scale microstructural evolution in the ternary Ni- ${Ni_3}Al-{Ni_3}V$ system)

  • 박성일;이혁모
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.947-952
    • /
    • 2001
  • The meso-scale microstructure of the $Ni-Ni_3Al- Ni_3V$ system is crucial to obtain both high strength and high toughness. Its evolution may be predicted with the aid of computer simulation of the compositional separation for heat-treated alloys. In this study, computer simulations of the hypothetical A-B-C ternary system, which is similar to the $Ni-Ni_3Al- Ni_3V$ system in terms of phase equilibria, have been performed using the kinetic modeling. Simulated morphologies were changed with nominal compositions and model parameters. It was showed the current model was useful and the more realistic model was proposed.

  • PDF

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • 제6권3호
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

용매열 합성법을 통하여 알루미늄을 도핑한 니켈옥사이드의 제조와 그 결정구조적, 전기적 특성 (Preparation of Al-doped NiO via Solvothermal Synthesis and its Crystal Structural and Electrical Properties)

  • 홍선기;지미정;이민진;정성헌;설광희;최병현
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.631-635
    • /
    • 2012
  • Nickel oxide was doped with a wide range of concentrations (mol%) of Aluminum (Al) by solvothermal synthesis; single-phased nano powder of nickel oxide was generated after calcination at$900^{\circ}C$. When the concentration of Al dopant was increased, the reduced intensity was confirmed through XRD analysis. Lattice parameters of the synthesized NiO powder were decreased after treatment of the dopant; parameters were increased when the concentration of Al was over the doping limit (5 mol% Al). The binding energy of $Ni^{2+}$ was chemically shifted to $Ni^{3+}$ by doping $Al^{3+}$ ion, as confirmed by the XPS analysis. The tilted structure of the synthesized NiO with 5 mol% Al dopant and the polycrystalline structure of the $Ni_{0.75}Al_{0.25}O$ were observed by HR-TEM analysis. The electrical conductivity of the newly synthesized NiO was highly improved by Al doping in the conductivity test. The electrical conductivity values of the commercial NiO and the synthesized NiO with 5 mol% Al dopant ($Ni_{0.95}Al_{0.05}O$) were 1,400 s/cm and 2,230 s/cm at $750^{\circ}C$, respectively. However, the electrical conductivity of the synthesized NiO with 10 mol% Al dopant ($Ni_{0.9}Al_{0.1}O$) decreased due to the scattering of free-electrons caused by the large number of impurity atoms; the electrical conductivity of $Ni_{0.9}Al_{0.1}O$ was 545 s/cm at $750^{\circ}C$.

Bond Coat의 산화가 Thermal Barrier Coating의 파괴에 미치는 영향 (Effect of Oxidation of Bond Coat on Failure of Thermal Barrier Coating)

  • 최동구;최함메;강병성;최원경;최시경;김재철;박영규;김길무
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.88-94
    • /
    • 1997
  • 플라즈마 용사법(plasma spray method)으로 제작된 상용 가스 터빈 연소기의 finned segment의 열차폐용 코팅계, ZrO2-8wt%Y2O3 top coat/Ni-26Cr-5Al-0.5Y bond coat/Hastelloy X superalloy 기판에서 NiCrAlY bond coat의 산화 거동과 열피로 파괴에 대하여 조사하였다. 생성된 bond coat의 주산화물은 NiO, CrO2, Al2O3였다. ZrO2/bond coat계면에서 생성된 산화물의 분포는 고온에서의 사용 전에 이 계면 아래에 얇은 층의 Al2O3가없는 곳에서는 NiO 산화층 및에 Cr2O3와 Al2O3가 혼합된 형태를 나타내었다. 열피로에 의해 박리된 시편의 파면을 관찰한 결과, 파괴는 주로 ZrO2/산화층 계면보다 세라믹층내로 약간 치우쳐서 일어나지만, 산화층 내에서도 약간 일어남을 알 수 있었다.

  • PDF

용융탄산염에 대한 스테인레스강의 내식성 향상을 위한 NiAl 피복에 관한 연구 (Study on the NiAl Coating for Corrosion Resistance of Stainless Steel in Molten Carbonate Salt)

  • 황응림;강성군
    • 한국재료학회지
    • /
    • 제7권1호
    • /
    • pp.76-80
    • /
    • 1997
  • 용융탄산염 연료전지 분리판의 wet-seal부의 내식성 향상을 위한 NiAl 피복공정이 조사되었다. AlSl 316 스테인레스강위에 Ni과 Al를 순차적으로 피복한 후, $800^{\circ}C$에서 3시간 열처리하여 NiAl상이 형성됨을 확인할 수 있었다. NiAl상이 피복된 스테인레스강은 $650^{\circ}C$, 용융탄산염($62^{m}/_{o}Li_2CO_3-38^{m}/_{o}/K_{2}CO_{3}$)내에서 침지시험을 통해 내식성이 평가되었는데, AISI 316 스테인레스강에 비해 우수한 내식성을 보였다. 이는 표면에 치밀하게 형성된 AI 산화물층에 의한 것으로 판단되었다.

  • PDF

에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동 (Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications)

  • 김경태;우재열;유지훈;이혜문;임태수;최윤정;김창기
    • 한국입자에어로졸학회지
    • /
    • 제10권4호
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.

$Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구 (Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder)

  • 김범성;이재성;오승탁;좌용호
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

Ball milling을 이용하여 제조된 6061Al기지 Ti-Ni-Cu 압출재의 기계적특성 (Mechanical Properties of 6061Al Extruded Composite with Ti-Ni-Cu Fabricated by Ball milling)

  • 안인섭;배승열;김유영
    • 한국분말재료학회지
    • /
    • 제6권4호
    • /
    • pp.270-276
    • /
    • 1999
  • Ti-Ni-Cu alloy powders were fabricated by ball milling, and the properties of these powders were characterized. Mixed 50Ti-(50-x)Ni-xCu powders of 5 to 10at.%Cu composition were milled for 100 hours using SUS 1/4" balls in argon atmosphere. Ball to powder ratio was 20:1 and rotating speed was 100 rpm. Tensile strength, microstructure and phase transformation of ball milled Ti-(50-x)Ni-xCu powders were studied. After 100 hours milling, Ti, Ni and Cu elements were alloyed completely and an amorphous phase was formed. Amorphous phase was crystallized to martensite(B 19') and austenite(B2) after heat treatment for 1 hour at $850^{\circ}C$. As the Cu contents were increased, tensile strength of extruded 6061Al/TiNiCu was decreased, and B19'martensite phases In the TiNi particles were the causes of high tensile stress of extruded 6061Al/TiNiCu.NiCu.

  • PDF