Browse > Article
http://dx.doi.org/10.4150/KPMI.2003.10.6.406

Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy  

이태행 (천안공업대학 신소재 열공정학과)
홍순직 (충남대학교 급속응고 신소재연구소)
Publication Information
Journal of Powder Materials / v.10, no.6, 2003 , pp. 406-414 More about this Journal
Abstract
In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.
Keywords
Nano structure; Al-Si-Ni-Ce alloy; Rapid Solidification; Gas atomization; Ultimate tensile strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Inoue, T. Zhang and T. Masumoto: J. of Non-crystalline Solids, 473 (1999) 156.
2 S. J. Hong, T. S. Kim, W. T. Kim and B. S. Chun : Mater. Sci. Eng., A226 (1997) 878.   DOI   ScienceOn
3 J. Zhou, J. Duszczyk and B. M. Korevaar : J. Mater. Sci., 26 (1991) 824.   DOI
4 A. Inoue, K. Ohtera, A. P. Tsai and T. Masumoto : Jpn. J. Appl. Phys., 27 (1988) L280.   DOI
5 K. Higashi, T. Mukai, A. Uoya, A. Inoue and T. Masumoto: Mater. Trans. JIM, 36 (1995) 1467.
6 S. J. Hong, T. S. Kim, H. S. Kim, W. T. Kim and B. S. Chun : Mater. Sci. Eng., A271 (1999) 469.   DOI   ScienceOn
7 T. S. Kim, S. J. Hong, W. T. Kim, C. W. Won, S. S. Cho and B. S. Chun : Mater. Trans. JIM, 39 (1998) 1214.   DOI   ScienceOn
8 H. Jones: Mater. Sci. Eng., 5 (1969) 1.   DOI   ScienceOn
9 T. S. Kim and B. S. Chun : J. Kor. Inst. Met & Mater. Vol. 40, 8 (2002) 873.
10 A. Inoue, K. Ohtera, A. P. Tsai and T. Masumoto : Jpn. J. Appl. Phys., 27 (1988) 479.   DOI   ScienceOn
11 T. Hayashi, T. Kaji, Y. Takeda, Y. Odani and K. Akechi : Sumitomo Electric Tech. Rev., 34 (1992) 107.
12 Y. H. Kim, A. Inoue and T. Masumoto : Mater. Trans., JIM, 32 (1991) 331.
13 H. Chen, Y. He, G. J. Shiflet and S. J. Poon : Scripta Metall. Mater., 25 (1991) 1421.   DOI   ScienceOn
14 S. J. Hong, H. S. Kim, C. Suryanarayana and B. S. Chun, Mater. Sci. Tech., 19 (2003) 966.   DOI   ScienceOn
15 S. J. Hong, T. S. Kim, C. Suryanarayana and B. S. Chun : Metal. Mater. Trans, 32A (2001) 821.   DOI
16 S. J. Hong and B. S. Chun : Mater. Sci. Eng., A348 (2003) 262.   DOI   ScienceOn