• 제목/요약/키워드: Ni-nanoparticles

검색결과 172건 처리시간 0.028초

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar;Dabbawala, Aasif A.;Truong, Cong Chien;Alhassan, Saeed M.;Jegal, Jonggeon;Hwang, Jin Soo
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.325-334
    • /
    • 2018
  • Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.

Characteristics of Fe-Ni Nanopowders Prepared by Electrical Explosion of Wire in Water and Ethanol

  • Bac, L.H.;Kim, B.K.;Kim, J.S.;Kim, J.C.
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.435-439
    • /
    • 2011
  • In this work, we prepared Fe-Ni alloy nanopowders by wire electrical explosion in deionized water and ethanol. Particles size and morphology of the as-synthesized nanoparticles prepared in water and ethanol were observed by transmission electron microscopy. In both cases, the as-synthesized nanoparticles were in nearly spherical shape and their size distribution was broad. The particles prepared in the water were in core-shell structure due to the oxidation of Fe element. X-ray diffraction was used to analyze the phase of the nanopowders. It showed that the nanopowders prepared in water had ${\gamma}$-Fe-Ni solid solution and FeO phase. The samples obtained in ethanol were in two phases of Fe-Ni solid solution, ${\gamma}$-Fe-Ni and ${\alpha}$-Fe-Ni. Bulk samples were made from the as-synthesized nanopowders by spark plasma sintering at $1000^{\circ}C$ for 10 min. Structure of the bulk sample was observed by scanning electron microscope. Magnetic properties of the as-synthesized nanopowders and the bulk samples were investigated by vibrating sample magnetometer. The hysteresis loop of the assynthesized nanopowders and the sintered bulk samples revealed a ferromagnetic characteristic.

자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성 (Soft-template Synthesis of Magnetically Separable Mesoporous Carbon)

  • 박성수;하창식
    • 접착 및 계면
    • /
    • 제18권2호
    • /
    • pp.75-81
    • /
    • 2017
  • 본 연구에서는 잘 배열된 나노세공 구조와 자성체 나노입자를 포함하는 메조포러스 카본(Carbonized Ni-FDU-15)을 합성하였다. Carbonized Ni-FDU-15는 구조형성 주형으로 트리블럭 공중합체(F127)를 이용하고, 카본 세공벽 형성 물질로 resol 전구체를 사용하며 질산 니켈(nickel(II) nitrate)을 금속이온 원으로 사용하여 증발유도 자기조립(Evaporation-Induced Self-Assembly, EISA)과 직접 탄화과정을 거쳐서 합성되었다. 메조포러스 카본은 잘 배열된 이차원적 육방체 구조(2D-hexagonal structure)를 가진다. 한편, 세공벽 내 자성체 나노입자는 니켈(Ni) 금속과 니켈 산화물(NiO)이 생성되었다. 나노입자의 크기는 약 37 nm이었다. 그리고 Carbonized Ni-FDU-15의 표면적, 세공크기, 세공부피는 각각 $558m^2g^{-1}$, $22.5{\AA}$ 그리고 $0.5cm^3g^{-1}$이었다. Carbonized Ni-FDU-15는 외부에서 자력을 가하였을 때 자력이 가해지는 방향으로 이동함을 확인하였다. 이러한 자성체 담지 메조포러스 카본 물질은 흡착/분리, 자기 저장 매체, 자성 유체(ferrofluid), 자기 공명 영상(MRI) 및 약물 타겟팅 등의 광범위한 응용 분야에 높은 응용성을 가질 것으로 기대된다.

Pt합금 촉매에서 메탄을 산화 반응에 미치는 제2금속의 영향 (The Effects of 2nd Metals in Pt-based Electrocatalysts on Methanol Oxidation)

  • 김영민;박경원;최종호;박인수;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2002년도 연료전지심포지움 2002논문집
    • /
    • pp.179-182
    • /
    • 2002
  • The electrooxidation of methanol was studied using Pt, PtRu(1:1), PtNi(1:1), PtRh(1:1) and PtOs(1:1) alloy nanoparticles for application as electrocatalysts. The effects of the second metals in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). There are the metallic and oxygen states in the PtRu and PtOs electrocatalysts . In the XPS of PtRu and PtOs alloy nanoparticles, the oxygen sources were dominant as the second metal's effects. Negative shifts of the binding energies of Pt for the PtNi, PtRh alloy nanoparticles were determined by XPS measurements, which can be explained by electronic effects.

  • PDF

Structural and Magnetic Properties of Ni0.6Zn0.4Fe2O4 Ferrite Prepared by Solid State Reaction and Sol-gel

  • Kwon, Yoon Mi;Lee, Min-Young;Mustaqima, Millaty;Liu, Chunli;Lee, Bo Wha
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.64-67
    • /
    • 2014
  • $Ni_{0.6}Zn_{0.4}Fe_2O_4$ prepared using solid state reaction and sol-gel methods were compared for their structural and magnetic properties. Due to the much higher annealing temperature used in solid state reaction, the crystalline size was much larger than that of the nanoparticles prepared by sol-gel. The saturation magnetization of sol-gel nanoparticles was higher, and the coercivity was about 2 times larger, compared to the solid state reaction sample. By analyzing the integration intensity of x-ray diffraction peaks (220) and (222), we proposed that the difference in the saturation magnetization might be due to the inversion of cation distribution caused by the different preparation techniques used.

Effect of Rapid Thermal Annealing on Growth and Field Emission Characteristics of Carbon Nanotubes

  • Ko, Sung-Woo;Shin, Hyung-Cheol;Park, Byung-Gook;Lee, Jong-Duk;Jun, Pil-Goo;Kwak, Byung-Hwak;Noh, Hyung-Wook;Uh, Hyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.453-455
    • /
    • 2004
  • The effect of rapid thermal annealing (RTA) treatment on the growth characteristics of CNTs was investigated. We observed that Ni catalyst film was agglomerated by RTA treatment, resulting in the formation of Ni nanoparticles. The well aligned CNTs were grown from the Ni nanoparticles by plasma enhanced chemical vapor deposition (PECVD). It is shown that the size and distribution of the nanoparticles depend mainly on the annealing temperature and initial thickness of the metal layer. Also, it was found that CNTs grown through optimal RTA treatment had the more improved field emission characteristics than those of as-grown CNTs.

  • PDF

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart;Seisenbaeva, Gulaim A.;Kessler, Vadim G.
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.77-88
    • /
    • 2014
  • Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Effects of Solution Concentration on the Structural and Magnetic Properties of Ni0.5Zn0.5Fe2O4 Ferrite Nanoparticles Prepared by Sol-gel

  • Yoo, B.S.;Chae, Y.G.;Kwon, Y.M.;Kim, D.H.;Lee, B.W.;Liu, Chunli
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.230-234
    • /
    • 2013
  • The $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles about 30 nm were prepared using sol-gel method with metal nitrates dissolved in 2-methoxyathanol. The concentrations of the metal nitrates are adjusted from 0.1 to 0.75 M in order to study the influence on the structural and magnetic properties. The structure and morphology characterization revealed that the crystallinity was improved and the nanoparticle size was increased with the nutrition solution concentrations up to 0.5 M. Degraded crystallinity together with decreased nanoparticle size were observed for concentration of 0.75 M. The saturation magnetization at room temperature reached maximum at 0.5 M, which can be explained by considering the crystallinity and size effect.

역-마이셀 공정에 의한 NiAl2O4 무기안료 나노 분말의 합성 및 특성 (Synthesis and Characterization of NiAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing)

  • 손정훈;배동식
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.95-99
    • /
    • 2015
  • $NiAl_2O_4$ nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. $Ni(NO_3)_2{\cdot}6H_2O$ and $Al(NO_3)_3{\cdot}9H_2O$ were used for the precursor in order to synthesize $NiAl_2O_4$ nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at $800{\sim}1100^{\circ}C$ for 2h. The average size and distribution of synthesized $NiAl_2O_4$ powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized $NiAl_2O_4$ powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized $NiAl_2O_4$ powder increased with an increasing heating temperature. The synthesized $NiAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscopy(FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain $NiAl_2O_4$ spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.