Browse > Article
http://dx.doi.org/10.12989/anr.2014.2.2.077

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis  

Dutilleul, Marion Collart (Ecole National Superiore de Chimie de Clermont Ferrand)
Seisenbaeva, Gulaim A. (Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences)
Kessler, Vadim G. (Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences)
Publication Information
Advances in nano research / v.2, no.2, 2014 , pp. 77-88 More about this Journal
Abstract
Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.
Keywords
metal nanoparticle; solvothermal synthesis; solvent effect; beta-hydrogen transfer; solutionstability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pazik, R., Tekoriute, R., Hakansson, S., Wiglusz, R., Strek, W., Siesenbaeva, G.A., Gun'ko, Y.K. and Kessler, V.G. (2009), "Precursor and solvent effects in the non-hydrolytic synthesis of complex oxide nanoparticles for bio-imaging applications by the ether elimination (Bradley) reaction", Chem. Eur. J., 15, 6820-6826.   DOI   ScienceOn
2 Werndrup, P., Kessler, V.G., Gohil, S., Kritikos, M. and Hubert-Pfalzgraf, L.G. (2001), "Isolation and X-ray single crystal study of volatile homo- and heterometallic aminoalkxide complexes of nickel(II): $Ni({\mu}_{2}-OR^{N})_{2}$, $Ni({\mu}_{2}-OR^{N})_{2}{\cdot}C_{7}H_{8}$ and $Ni(Ni_{0.25}Cu_{0.75})_{2}({\mu}_{3}-OH)({\mu}_{2}-OAc)(OAc)_{2}({\mu}_{2}{\eta}_{2}-OR^{N})_{3}({\mu}_{2}-R^{N}OH)$, $R^{N}=CHMeCH_{2}NMe_{2}$", Polyhedron, 20, 2163-2169.   DOI   ScienceOn
3 Wilkinson, K., Palmberg, L., Kupczyk, M., Fadeel, B., Gerde P., Seisenbaeva, G.A., Dahlen, S.E. and Kessler V.G. (2011), "Solution engineered Pd nanoparticles: models for health effect studies of automotive particulate polution", ACS Nano, 5, 5312-5324.   DOI   ScienceOn
4 Nikonova, O., Nedelec, J.M., Kessler, V.G. and Seisenbaeva, G.A. (2011), "Precursor-directed assembly of complex oxide nanobeads. The role of strongly coordinated inorganic anions", Langmuir, 27, 11622-11628.   DOI
5 Pazik, R., Andersson, R., Kepinski, L., Kessler, V.G., Nedelec, J.M. and Seisenbaeva, G.A. (2011), "Surface functionalization of metal oxide nanoparticles with biologically active molecules containing phosphonate moieties", J. Phys. Chem. C, 115, 9850-9860.   DOI   ScienceOn
6 Pazik, R., Piasecka, E., Malecka, M., Kessler, V.G., Idzikowski, B., Sniadecki, Z. and Wiglusz, R.J. (2013), "Facile non-hydrolytic synthesis of highly water dispersible, surfactant free nanoparticles of synthetic $MFe_{2}O_{4} (M - Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+})$ ferrite spinel by a modified Bradley reaction", RSC Adv., 3, 12230-12243.   DOI   ScienceOn
7 Robinson, I., Zacchini, S., Tung, L.D., Maenosono, S. and Thanh N.T.K. (2009), "Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters", Chem. Mater., 21, 3021-3026.   DOI   ScienceOn
8 Roucoux, A., Schulz, J. and Patin, H. (2002), "Reduced transition metal colloids: a novel family of reusable catalysts?", Chem. Rev., 102, 3757-3778.   DOI   ScienceOn
9 Schaadt, D.M., Feng, B. and Yu, E.T. (2005), "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles", Appl. Phys. Lett., 86, 063106.   DOI   ScienceOn
10 Shin, N.C., Lee, Y.H., Shin, Y.H., Kim, J., and Lee, Y.W. (2010), "Synthesis of cobalt nanoparticles in supercritical methanol", Mater. Chem. Phys., 124, 140-144.   DOI   ScienceOn
11 Aparna, R., Srinivas, V., Ram, S., de Toro, J.A. and Mizutani, U. (2005), "Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method", Phys. Rev. B, 71, 184443.   DOI   ScienceOn
12 Chen, C.S., Wu, J.H. and Lai, T.W. (2010), "Carbon dioxide hydrogenation on Cu nanoparticles", J. Phys. Chem. C, 114, 15021-15028.   DOI   ScienceOn
13 Crooks, R.M., Zhao, M.Q., Sun, L., Chechik, V. and Yeung, L.K. (2001), "Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis", Acc. Chem. Res., 34, 181-190.   DOI   ScienceOn
14 Kowlgi, K.N.K., Koper, G.J.M., Picken, S.J., Lafont, U., Zhang, L. and Norder, B. (2011), "Synthesis of Magnetic Noble Metal (Nano) Particles", Langmuir, 27, 7783-7787.   DOI   ScienceOn
15 Filipe, V., Hawe, A. and Jiskoot, W. (2010), "Critical evaluation of Nanoparticle Tracking Analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates", Pharm. Res., 27, 796-810.   DOI
16 Fuldner, S., Mild, R., Siegmund, H.I., Schroeder, J.A., Gruber, M. and Konig, B. (2010), "Green-light photocatalytic reduction using dye-sensitized $TiO_{2}$and transition metal nanoparticles", Green Chem., 12, 400-406.   DOI   ScienceOn
17 Hou, Y., Kondoh, H., Ohta, T. and Gao, S. (2005), "Size-controlled synthesis of nickel nanoparticles", Appl. Surf. Sci., 241, 218-222.   DOI   ScienceOn
18 Metin, O ., Mazumder, V., O zkar, S. and Sun, S.H. (2010), "Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane", J. Am. Chem. Soc., 132, 1468-1469.   DOI   ScienceOn
19 Moreno-Manas, M. and Pleixats, R. (2003), "Formation of carbon-carbon bonds under catalysis by Transition-Metal Nanoparticles", Acc. Chem. Res., 36, 638-643.   DOI   ScienceOn
20 Narayanan, R. and El-Sayed, M.A. (2005), "Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability", J. Phys. Chem. B, 109, 12663-12676.   DOI   ScienceOn
21 Qi, L.M., Ma, J.M. and Shen, J.L. (1997), "Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions", J. Colloid Interface Sci., 186, 498-500.   DOI   ScienceOn
22 Robinson, I., Volk, M., Tung, L.D., Caruntu, G., Kay, N. and Thanh, N.T.K. (2009), "Synthesis of Co nanoparticles by pulsed laser irradiation of cobalt carbonyl in organic solution", J. Phys. Chem. C, 113, 9497-9501.   DOI   ScienceOn