• 제목/요약/키워드: Ni-Cr

Search Result 1,884, Processing Time 0.045 seconds

Study on the effect of soldering methods on the characteristics of the Ni-Cr alloy (납착 방법이 치과용 금속의 성상(性狀)에 미치는 영향에 관한 연구)

  • Kim, Chul-Hyung;Song, Young-Gyun;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • Purpose: The purpose of this study was to compare Ni-Cr alloy property of gas-oxygen torch soldering and infrared welding using optical microscope and Electron Probe Micro Analyzer (EPMA). Materials and methods: Ni-Cr alloys were casted for specimens. Specimens had 3.0 mm diameter, 30.0 mm length and were divided into two groups. Each group had 4 specimens. One group was for gas-oxygen torch soldering and the other was infrared welding. Specimens were cut with low-speed disc and soldered each other with gas-oxygen torch and infrared machine. After soldering and polishing, specimens were observed at 3 points (soldering point, 5 mm distance point, 10 mm distance point) with optical microscope and analyzed 3 points (soldering point, 5 mm distance point, 10 mm distance point with EPMA. Results: The results of this study were as follows: 1. The observation of gas-oxygen torch soldering at 10 mm distance point under the optical microscope was not founded any specific surface properties, but some crack lines were observed at 5 mm distance and soldering point. 2. There were no crack lines were founded at the observation of infrared welding at 10 mm distance and 5 mm distance points under the optical microscope. However, at the 5 mm distance, the surface was not smooth enough compared with at 10 mm distance point. Some crack lines were observed at the welding point as well. 3. In the EPMA analysis of the gas-oxygen torch soldering, the component of Ni was increased by 4.5%, Cr was increased by 7.5% than that of the Ni-Cr alloy at the 10.0 mm distance. At the 5 mm distance, the component of Ni was decreased by 6.1%, Mo was increased by 9.0% than that of the Ni-Cr alloy but Cr was equally shown at the 5.0 mm distance. Only Ni was shown at the soldering point. 4. In the EPMA analysis of the infrared welding, the component of Ni was increased by 9.1%, Cr was increased by 0.4% than that of the Ni-Cr alloy but Al was equal at the 10.0 mm distance. At the 5 mm distance, the component of Ni was increased by 4.7%, Cr was increased by 4.7% and Al was increased by 0.1% than that of the Ni-Cr alloy. At the welding point, the component of Ni was increased by 8.8%, Cr was increased by 8.2% than that of the Ni-Cr alloy. Conclusion: From these results, at the 5 mm distance from the soldering point, the surface of the infrared welding was more smoother than that of the gas-oxygen torch soldering. On the EPMA analysis, the component of the specimens with infrared welding was more similar than that of the gas-oxygen torch soldering compared with the component of the Ni-Cr alloy.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

Effect of Porcelain Firing Process on the Marginal and Internal Fit of Ni-Cr Alloy Metal-Ceramic Crown (도재 소성과정이 Ni-Cr 금속도재관의 변연 및 내면 적합도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Seok-Hwan;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.14 no.3
    • /
    • pp.405-410
    • /
    • 2014
  • The purpose of this study in vitro investigation was to compare the marginal and internal fit of Ni-Cr alloy metal ceramic crown before and after porcelain veneering. Furthermore, this study evaluated whether the influence of the porcelain firing on the precision of fit of dental prostheses. The maxillary right incisor was selected as an abutment for experiments. Ten working models were prepared. Ni-Cr alloy cores appropriate for each abutment were prepared by lost wax technique. The marginal area and four internal areas of the crowns were measured at two stages: before veneering process and after upper porcelain firing. Silicone replica techniques were used. The data were statistically analyzed with the paired t-test (${\alpha}=0.05$). $Mean{\pm}SD$ marginal and internal gap were $67.1{\pm}23.3{\mu}m$ for the nickle chrome alloy core group and $74.4{\pm}21.9{\mu}m$ for the metal ceramic crown group. There were statistically significant differences in all investigated areas (p<0.05). Within the limitations of this study, none of the Ni-Cr alloy metal crown values measured after porcelain firing process exceeded $120{\mu}m$, which is the clinically acceptable threshold.

Pattern and thermal durability of flexible copper clad laminate depends on the ternary tie-coating material (삼원계 tie-coating 물질에 따른 FCCL(연성동박적층판)의 패터닝성과 내열성의 관한 연구)

  • Kim, Si-Myeong;Kim, Sang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.275-276
    • /
    • 2015
  • 기존의 상용화된 Ni-Cr tie-coating 물질은 내열성 시험 후 강도가 저하되고, Cr 성분이 patterning후에 완벽하게 제거 되지 않아서 누설 전류를 만드는 단점을 갖고 있다. 따라서 이 연구에서는 기존의 Ni-Cr 과 삼원계 Ni-Cr-X(X는 Nb, V, Mo, Ti) 물질의 패터닝성과 내열성을 비교하였다.

  • PDF

Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

  • Al Jabbari, Youssef S.
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.

HEAVY METAL CONTINT IN THE SEDIMENTS FROM THE CONTINENTAL SHELF AROUND JEJU ISLAND AND SOUTHERN COASTAL AREA, KOREA (濟州道周圍 및 南海沿岸 堆積物中의 重金屬含量)

  • 석봉출;박병권
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.29-42
    • /
    • 1983
  • This stidy was intended to investigate the heavy metal contents in the bottom sediments of the continental shelt around the Jeju Island and ot the southern coastal area of the Korean Peninsula. For this study 39 bottom sedinent samples were taken from the study area using Phleger gramity corer and Snapper. The average contents of heavy metals were 59.1 ppm Zn, 362.6 ppm Mn, 63.8 ppm Cr, 15.7 ppm Pb, 10.0 ppm Co, 28.9 ppm Ni, 10.5 ppm Cu, and 2.7% Fe in the surficial sediments around the Jejr Island; and 79.ppm Zn, 384 ppm Mn, 8.6 ppm Pb, 17.8 ppm Ni, 23.2 ppm Cu, and 1.59 % fe in those of nearsgore of the southern coastal area respectively. The heavy metal contents were higher in the northwestern part around the Jeju Island compared to those in other region. However, these tendencies were not the result of pollution, but of the differences of grain size of the sedimenrs. In the nearshore of the southern coast, the heavy metal contents did not show any geographical tendency. However, those of Masan and Jinhae Bays wew higher than those of the other region. These seemed to be caused by waste disposal from the industrial compsex located at the adjacent land. Nevertheless these values of heavy metal content except for Zn and Cu in Masan Bay and inner bay of Jinhae are lower than the average values of the each world-wide data of the nearshore sedimentl. The pair correlations of the cach heavy metal elements were calculated by regressino analysis using VAX 780 computer. the following pair elements, such as Zn-Cu, Ni-Cu, Fe-cu, Cr-Cu, Co-Zn, Ni-Zn, Cr-Zn, Ni-Co, Fe-Co, Cr-Co, Fe-Ni, Cr-Ni and Cr-Fe show closely posetive linear correlations in the sediments around the Jeju Island. In general, the heavy metal content increases in proportion to the increase of the mean values of the grain size of the sediments around the Jeju Island. In the southern coastal area, in gineral, thepair correlations of each heavy metal elements did not southern coastal area, in general, the pair correlatttttions of rach heavy metal elements did not show any positive correlation except for the positive linear correlations of Cu-Zn, Cu-ni and Ni-Mn. It is interpreted as a result of the differences of the physecochemical environment of the sampling sites and also of the influences of the ondustrial wastes from the manufacturing factores located at the coastal zone of the study area.

  • PDF

Heavy Metal Contents and Food Safety Assessment of Processed Seaweeds and Cultured Lavers (국내 가공 해조류와 미가공 김의 중금속 함량 및 식품 안전성평가)

  • Yang, Won Ho;Lee, Hyo Jin;Lee, Sang Yong;Kim, Seong Gil;Kim, Gi Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.203-210
    • /
    • 2016
  • In this study, nine heavy metals were analyzed in seaweeds collected from market and laver culture farm of Korea and a food safety assessment were also carried out for these heavy metals. The level of heavy metal concentrations in seaweeds was in the following order: Fe>As>Zn>Cu>Cd>Pb>Cr>Ni>Hg. Except for zinc and cadmium, seven heavy metals were significantly higher in cultured laver than in processed laver. Significant correlation was observed Cr-Fe in cultured laver and Cu-Zn, Cd-Cu, Cd-Zn and Pb-Ni in processed laver and Cu-Cr, Cu-Zn, Cd-Cr and Ni-Fe in sea tangle and Zn-Fe, Cr-Fe, Cr-Zn, Cd-Ni, Cu-Cd and Cu-Pb in processed sea mustard. Considering differences in heavy metal concentration between processed laver and cultured laver and in correlation among heavy metals, removal efficiency of heavy metals may be attributed to seaweed treatment process. The average weekly intakes of Cu, Cd, Zn, Fe and Hg via seaweeds consumption were about 0.1~7.6% of PTWI (Provisional Tolerable Weekly Intakes). Therefore, it was found that heavy metals in the seaweeds were very safe for consumption.

Oxidation Behavior at the Interface between E-beam Coated $ZrO_{2}$-7wt.%$Y_{2}O}_{3}$and Plasma Sprayed CoNiCrAlY (전자빔 코팅 및 플라즈마 용사에 의한 안정화지르코니아/CoNiCrAlY 계면의 산화거동)

  • Choi, Won-Seop;Kim, Young-Do;Jeon, Hyeong-Tag;Kim, Hyon-Tae;Yoon, Kook-Han;Hong, Kyung-Tae;Park, Jong-Ku;Park, Won-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.538-544
    • /
    • 1998
  • The spallation of a thermal barrier coating layer depends on the formation of brittle spinels. thermal expansion mismatch between ceramic and metal. the phase transformation of a ceramic layer and residual stress of coating layer. In this work. the formation mechanism of oxide scale formed by oxidation treatment at 90$0^{\circ}C$ was investigated in order to verify oxidation behavior at the interface between E-beam coated $Zr0_2$-7wt.% $Y_20_3$ and plasma sprayed CoNiCrAIY. Some elements distributed in the bond coating layer were selectively oxidized after oxidation. At the initial time of oxidation. AI-depletion zone and $\alpha$-$Al_O_3$,O, were formed at the bond coating layer by the AI-outward diffusion. After layer grew until critical thickness. spinels. $Cr_20$, and $C0_2CrO_4$ by outward diffusion of Co. Cr, Ni were formed. It was found that the formation of spinels may be related to the spallation of $Zr0_2$-7wt.% $Y_20_3$ during isothermal oxidation.

  • PDF