• Title/Summary/Keyword: Ni oxidation

Search Result 535, Processing Time 0.03 seconds

Junction Area Dependence of Tunneling Magnetoresistance in Spin-dependent Tunneling Junction with Natural $Al_2O_3$Barrier (자연산화 $Al_2O_3$장벽층을 갖는 스핀의존 터널링 접합에서 자기저항특성의 접합면적 의존성)

  • 이긍원;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.202-210
    • /
    • 2001
  • Spin dependent tunneling (SDT) junction devices of Ta/NiFe/Ta/NiFe/FeMn/NiFe/AlOx/CoFe/NiFe/Al with in-situ naturally oxidized Al barrier were fabricated using ion beam deposition and dc sputtering in UHV chamber of 10$^{-9}$ Torr. The maximum tunneling magnetoresistance (TMR) and the product resistance by junction (R$_{j}$ A) are 16-17% and 50-60 $\Omega$${\mu}{\textrm}{m}$$^2$, respectively. The values of TMR and (R$_{j}$ A) with field annealing were slightly increased. The TMR and (R$_{j}$ A) dependence versus the junction area size was observed. These results were explained by using sheet resistance effect of bottom electrode and spin channel effects.

  • PDF

Emission Characteristics of Mercury and Heavy Metals from Coal and Waste Fuels (석탄과 폐기물 연료의 수은 및 중금속 배출 특성)

  • Ahmad, Tanveer;Park, Min;Keel, Sangin;Yun, Jinhan;Park, Jeong Min;Lee, Sang-Sup.
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • Waste can be utilized as secondary or alternative fuel. Solid recovered fuel (SRF) and dried sewage sludge were combusted to investigate heavy metal emissions from their combusiton in this study. Content of copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), lead (Pb), arsenic (As) and mercury (Hg) of coal, SRF and dried sewage sludge were determined, respectively. Concentrations of these heavy metals in the combustion flue gas were also determined. As a result, emissions of gas-phase Cu, Cr, Cd, Ni, Zn, Pb and As compounds were found to be little. However, a significant amount of gas-phase Hg was emitted from combustion of coal, SRF and dried sewage sludge. While SRF showed a high mercury oxidation percentage in its combustion flue gas, dried sewage sludge showed a high level of gaseous mercury emission.

Characteristics of Sr2Ni1.8Mo0.2O6-δ Anode for Utilization in Methane Fuel Conditions in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.335-343
    • /
    • 2019
  • In this study, $Sr_2Ni_{1.8}Mo_{0.2}O_{6-{\delta}}$ (SNM) with a double perovskite structure was investigated as an alternative anode for use in the $CH_4$ fuel in solid oxide fuel cells. SNM demonstrates a double perovskite phase over $600^{\circ}C$ and marginal crystallization at higher temperatures. The Ni nanoparticles were exsolved from the SNM anode during the fabrication process. As the SNM anode demonstrates poor electrochemical and electro-catalytic properties in the $H_2$ and $CH_4$ fuels, it was modified by applying a samarium-doped ceria (SDC) coating on its surface to improve the cell performance. As a result of this SDC modification, the cell performance improved from $39.4mW/cm^2$ to $117.7mW/cm^2$ in $H_2$ and from $15.9mW/cm^2$ to $66.6mW/cm^2$ in $CH_4$ at $850^{\circ}C$. The mixed ionic and electronic conductive property of the SDC provided electrochemical oxidation sites that are beyond the triple boundary phase sites in the SNM anode. In addition, the carbon deposition on the SDC thin layer was minimized due to the SDC's excellent oxygen ion conductivity.

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites (Mg2NiHx-5wt% CaO 복합재료의 수소화 속도)

  • SHIN, HYO-WON;HWANG, JUNE-HYEON;KIM, EUN-A;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

Oxidation Process for the Etching Solution Regeneration of Ferric Chloride Using Liquid and Solid Oxidizing Agent (염화철 에칭 용액 재생을 위한 액상 및 고상 산화제를 이용한 산화공정에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Kim, Geon-Hong;Chae, Byung-man;Lee, Sang-Woo;Choi, Hee-Lack;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.158-162
    • /
    • 2017
  • $FeCl_3$ solution has been used as an etchant for metal etching such as Fe, Cu, Al and Ni. In the etching process, $Fe^{3+}$ is reduced to $Fe^{2+}$ and the etching efficiency is decreased. Waste $FeCl_3$ etchant has environmental, economic problems and thus the regeneration of the etching solution has been required. In this study, HCl was mixed with the $FeCl_2$ solution and then, $H_2O_2$, $NaClO_3$ were added into the mixed solution to oxidize the $Fe^{2+}$. During the oxidation process, oxidation-reduction potential (ORP) was measured and the relationship between ORP and oxidation ratio was investigated. The ORP is increased with increasing the concentration of $H_2O_2$ and $NaClO_3$, and then the ORP is decreased with oxidation progress. Such a behavior was in good agreement with Nernst's equation. Also, the oxidation efficiency was about 99% when a sufficient amount of HCl and $H_2O_2$, $NaClO_3$ were added.

Corrosion Analysis of Ni alloy according to the type of molten metal (용융아연도금욕에 적용되는 용탕에 따른 Ni합금의 부식성 분석)

  • Baek, Min-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.459-463
    • /
    • 2017
  • Hot dip galvanizing in the steel plant is one of the most widely used methods for preventing the corrosion of steel materials including structures, steel sheets, and materials for industrial facilities. While hot dip galvanizing has the advantage of stability and economic feasibility, it has difficulty in repairing equipment and maintaining the facilities due to high-temperature oxidation caused by Zn Fume where molten zinc used in the open spaces. Currently, SM45C (carbon steel plate for mechanical structure, KS standard) is used for the equipment. If a part of the equipment is resistant to high temperature and Zn fume, it is expected to improve equipment life and performance. In this study, the manufactured Ni alloy was tested for its corrosion resistance against Zn fume when it was used in the hot dip galvanizing equipment in the steel plant. Two kinds of materials currently used in the equipment, new Ni alloy and Inconel(typical corrosion-resistant Ni alloy), were selected as the reference groups. Two kinds of molten metal were used to confirm the corrosion of each alloy according to the molten metal. Zn fume was generated by bubbling Ar gas from molten Zn in a furnace($500{\sim}700^{\circ}C$) and the samples were analyzed after 30 days. After 30 days, the specimens were taken out, the oxide layer on the surface was confirmed with an optical microscope and SEM, and the corrosion was confirmed using a potentiodynamic polarization test. Corrosion depends on the type of molten metal.

Interaction of oxygen with the ordered Ni3Al(111) alloy surface: adsorption and oxide islands formation at 800 K and 1000 K (Ordered Ni3Al(111) 합금표면과 산소와의 상호작용 : 800 K와 1000 K에서의 흡착과 oxide islands 형성연구)

  • Kang, B.C.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.322-329
    • /
    • 2007
  • The interaction of oxygen with the ordered $Ni_3Al(111)$ alloy surface at 800 K and 1000 K has been investigated using LEED, STM, HREELS, UPS, and PAX. The clean $Ni_3Al(111)$ surface exhibits a "$2{\times}2$" LEED pattern corresponding to the ordered bulk-like terminated surface structure. For an adsorption of oxygen at 800 K, LEED shows an unrelated oxygen induced superstructure with a lattice spacing of $2.93\;{\AA}$ in addition to the ($1{\times}1$) substrate spots. The combined HREELS and the UPS data point to an oxygen chemisorption on threefold aluminum sites while PAX confirms an islands growth of the overlayer. Since such sites are not available on the $Ni_3Al(111)$ surface, we conclude the buildup of an oxygen covered aluminum overlayer. During oxygen exposure at 1000 K, however, we observe the growth of ${\gamma}'-Al_2O_3$ structure on the reordered $Ni_3Al(111)$ substrate surface. This structure has been identified by means of HREELS and STM. The HREELS data will show that at 800 K the oxidation shows a very characteristic behavior that cannot be described by the formation of an $Al_2O_3$ overlayer. Moreover, the STM image shows a "Strawberry" structure due to the oxide islands formation at 1000 K. Conclusively, from the oxygen interaction with $Ni_3Al(111)$ alloy surface at 800 K and 1000 K an islands growth of the aluminum oxide overlayer has been found.

Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 매체순환식 가스연소기용 대량생산 산소공여입자들의 천연가스 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2009
  • Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.

Expression and Characterization of Truncated Recombinant Human Cytochrome P450 2J2

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Kim, Donghak
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • The human cytochrome P450 2J2 catalyzes an epoxygenase reaction to oxidize various fatty acids including arachidonic acid. In this study, three recombinant enzyme constructs of P450 2J2 were heterologously expressed in Escherichia coli and their P450 proteins were successfully purified using a $Ni^{2+}$-NTA affinity column. Deletion of 34 amino acid residues in N-terminus of P450 2J2 enzyme (2J2-D) produced the soluble enzyme located in the cytosolic fraction. The enzymatic analysis of this truncated protein indicated the typical spectral characteristics and functional properties of P450 2J2 enzyme. P450 2J2-D enzymes from soluble fraction catalyzed the oxidation reaction of terfenadine to the hydroxylated product. However, P450 2J2-D enzymes from membrane fraction did not support the P450 oxidation reaction although it displayed the characteristic CO-binding spectrum of P450. Our finding of these features in the N-terminal modified P450 2J2 enzyme could help understand the biological functions and the metabolic roles of P450 2J2 enzyme and make the crystallographic analysis of the P450 2J2 structure feasible for future studies.

Analyses of Oxide Scales Formed on TiCrN Coatings (TiCrN 박막의 고온 산화시 생성되는 산화막 분석)

  • 이동복;이영찬;김성훈;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.4
    • /
    • pp.321-326
    • /
    • 2001
  • The TiCrN Coatings haying three kinds of Compositions of $Ti_{36}$ $Cr_{26}$ $N_{38}$ , $Ti_{31}$ $Cr_{35}$ $N_{34}$ / and $Ti_{14}$ $Cr_{52}$ $N_{34}$ were deposited on STD 61 steel substrate by arc ion plating and were oxidized between 700 and 100$0^{\circ}C$ to identify the oxide scales formed on the coatings. The oxide scales were then analyzed using EPMA, XRD and GAXRD. During oxidation, the coatings consisting of TiN and CrN phases were reduced to TiO2 and $Cr_2$$O_3$, respectively. Titania tended to form at the outer oxide layer, whereas chromia tended to form at the inner oxide layer, owing to the different oxygen affinity. The substrate elements as well as coating elements diffused outwardly toward the oxide layer due to the concentration gradient. The growth of oxide from the TiCrN coatings was schematically expressed on the basis of thickness measurement of the reacted and unreacted coatings. The Cr element showed its stronger role to keep the TiCrN coatings from oxidation, when compared with Ni.

  • PDF