DOI QR코드

DOI QR Code

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites

Mg2NiHx-5wt% CaO 복합재료의 수소화 속도

  • SHIN, HYO-WON (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HWANG, JUNE-HYEON (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • KIM, EUN-A (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Materials Science & Engineering, Korea National University of Transportation)
  • 신효원 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 황준현 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 김은아 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공) ;
  • 홍태환 (한국교통대학교 응용화학에너지공학부 에너지소재공학전공)
  • Received : 2021.04.24
  • Accepted : 2021.06.10
  • Published : 2021.06.30

Abstract

Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(2019R1F1A1041405)와 교육부에서 지원하는 한국기초과학연구원 보조금(2019R1A6C1010047)과 중소벤처기업부가 부여한 재원(S3045542)에 의해 수행되었으며, 이에 감사드립니다.

References

  1. C. A. Grimes, O. K. Varghese, and S. Ranjan, "Hydrogen generation by water splitting", Light, Water, Hydrogen, Springer, Germany, 2008, pp. 35-113.
  2. D. Y. Goswami and F. Kreith "Energy conversion", CRC Press, 2007, pp. 2.1-2.21.
  3. H. T. Hwang and A. Varma, "Hydrogen storage for fuel cell vehicles", Current Opinion in Chemical Engineering, Vol. 5, 2014, pp. 42-48, doi: https://doi.org/10.1016/j.coche.2014.04.004.
  4. C. Z. Wu, P. Wang, X. Yao, C. Liu, D. M, Chen, G. Q. Lu, and H. M. Cheng, "Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling", J. Alloys and Compounds, Vol. 420, No. 1-2, 2006, pp. 278-282, doi: https://doi.org/10.1016/j.jallcom.2005.10.028.
  5. C. Milanese, A. Girela, G. Bruni, P. Cofrancesco, V. Berbenni, P. Mateazi, and A. Marini, "Mg-Ni-Cu mixtures for hydrogen storage: a kinetic study", Intermetalics Vol. 18, No. 2, 2010, pp. 203-211, doi: https://doi.org/10.1016/j.intermet.2009.07.012.
  6. J. F. Fernandez and C. R. Sanchez, "Rate determining step in the absorption and desorption of hydrogen by magnesium", J. Alloys Compd, Vol. 340, No. 1-2, 2002, pp. 189-198, doi: https://doi.org/10.1016/S0925-8388(02)00120-2.
  7. N. Cui, P. He, and J. L. Luo, "Magnesium-based hydrogen storage materials modified by mechanical alloying", Acta Mater., Vol. 47, No. 14, 1999, pp. 3737-3743, doi: https://doi.org/10.1016/S1359-6454(99)00249-9.
  8. T. S. Park and T. H. Lee, "The hydrogen binding property study by density functional theory for Zr, V, Fe and Al", Trans Korean Hydrogen New Energy Soc, Vol. 25, No. 6, 2014, pp. 602-608, doi: https://doi.org/10.7316/KHNES.2014.25.6.602.
  9. C. Zhi, T. Chao, P. Hui, and Y. Huabin, "Rehydrogenation performance of an MgH2-Nb2O5 system modified by heptane and acetone", Int. J. Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 8289-8294, doi: https://doi.org/10.1016/j.ijhydene.2009.12.016.
  10. W. N. Yang, C. X. Shang, and Z. X. Guo, "Site density effect of Ni particles on hydrogen desorption of MgH2", Int. J. Hydrogen Energy, Vol. 35, No. 10, 2010, pp. 4534-4542, doi: https://doi.org/10.1016/j.ijhydene.2010.02.047.
  11. S. Y. Jang, K. M. Kang, O. Hayato, and K. Shigeharu, "Mg-based hydrogen storage alloy", The Industry and Technology of Gas, Vol. 6, No. 1, 2003, pp. 40-47. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE0205908.
  12. A. D. Rud and A. M. Lakhnik, "Effect of carbon allotropes on the stru ctu re and hyd rogen sorption du rin g reactive ball-milling of Mg-C powder mixtures", Int. J. Hydrogen Energy, Vol. 37, No. 5, 2012, pp. 4179-4187, doi: https://doi.org/10.1016/j.ijhydene.2011.11.123.
  13. T. W. Hong, J. W. Lim, S. K. Kim, Y. J. Kim, and H. S. Park, "Effect of atmospheric hydrogen pressure on Mg2NiHx synthesis", Trans Korean Hydrogen New Energy Soc, Vol. 10, No. 1, 1999, pp. 27-40. Retrieved from https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=JAKO199921040976766&oCn=JAKO199921040976766&dbt=JAKO&journal=NJOU00291568.
  14. K. I. Kim and T. W. Hong, "Evaluations of hydrogen properties on MgHx-Nb2O5 composite by mechanical alloying", Materials Science Forum, Vol. 620-622, 2009, pp. 9-12, doi: https://doi.org/10.4028/www.scientific.net/MSF.620-622.9.
  15. C. J. Koroneos and E. A. Nanaki, "Life cycle environmental impact assessment of a solar water heater", J. Cleaner Production, Vol. 37, 2012, pp. 154-161, doi: https://doi.org/10.1016/j.jclepro.2012.07.001.
  16. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, and H. K. Liu, "Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites", J. Alloy. Comp, Vol. 422, No. 1-2, 2006, pp. 299-304, doi: https://doi.org/10.1016/j.jallcom.2005.11.074.
  17. M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutflesich, and R. Bormann, "Hydrogen storage in magnesium-based hydrides and hydride composites", Scripta Mater, Vol. 56, No. 10, 2007, pp.841-846, doi: https://doi.org/10.1016/j.scriptamat.2007.01.003.
  18. S. K. Sahoo, S. Parveen, and J. J Panda, "The present and future of nanotechnology in human health care", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, 2007, pp. 20-31, doi: https://doi.org/10.1016/j.nano.2006.11.008.
  19. M. W, Jung, J. H. Park, K. W. Cho, K. I. Kim, J. H. Chol, S. H. Kim, and T. W. Hong, "Hydrogenation properties of MgHx-V2O5 composites by hydrogen induced mechanical alloying", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 1, 2010, pp. 58-63.
  20. J. K. Lee and S. K. Kim, "Effect of CaO addition on the ignition resistance of Mg-Al alloys", Materials Transactions, Vol. 52, No. 7, 2011, pp. 1483-1488, doi: https://doi.org/10.2320/matertrans.M2010397.
  21. X. Yao, C. Wu, A. Du, G. Q, Lu, H. Cheng, S. C. Smith, J. Zou, and Y. He, "Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage", J. Phys. Chem. B, Vol. 110, No. 24, 2006, pp. 11697-11703, doi: https://doi.org/10.1021/jp057526w.
  22. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuiler, "Hydriding properties of a mechanically alloyed mixture with a composition M2Ni", Int. J. Hydrogen Energy, Vol. 10, No. 3, 1985, pp. 169-178, doi: https://doi.org/10.1016/0360-3199(85)90024-2.
  23. L. Zaluski, A. Zaluska, P. Tessier, J. O. Strom-Olsen, and R. Schulz, "Catalytic effect of Pd on hydrogen absorption in mechanically alloyed M2Ni, LaNi5 and FeTi", J. Alloys Compd, Vol. 217, No. 2, 1995, pp. 295-300, doi: https://doi.org/10.1016/0925-8388(94)01358-6.
  24. G. Liang, J. Huot, S. Boily, A. Van. Neste, and R. Schulz, "Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite", J. Alloys Compd, Vol. 291, No. 1-2, 1999, pp. 295-299, doi: https://doi.org/10.1016/S0925-8388(99)00268-6.
  25. S. Orimo and H. Fujii, "Hydriding properties of the M2Ni-H system synthesized by reactive mechanical grinding", J. Alloys Compd, Vol. 232, No. 1-2, 1996, pp. L16-L19, doi: https://doi.org/10.1016/0925-8388(95)02079-9.
  26. S. Orimo, H. Fujii, K. Ikeda, Y. Fujikawa, and Y. Kitano, "Hydriding properties of a nano-/amorphous-structured Mg-Ni-H system", J. Alloys Compd, Vol. 253-254, 1997, pp. 94-97, doi: https://doi.org/10.1016/s0925-8388(96)02995-7.