Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00017

Characteristics of Sr2Ni1.8Mo0.2O6-δ Anode for Utilization in Methane Fuel Conditions in Solid Oxide Fuel Cells  

Kim, Jun Ho (School of Chemical Engineering, Chonnam National University)
Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.3, 2019 , pp. 335-343 More about this Journal
Abstract
In this study, $Sr_2Ni_{1.8}Mo_{0.2}O_{6-{\delta}}$ (SNM) with a double perovskite structure was investigated as an alternative anode for use in the $CH_4$ fuel in solid oxide fuel cells. SNM demonstrates a double perovskite phase over $600^{\circ}C$ and marginal crystallization at higher temperatures. The Ni nanoparticles were exsolved from the SNM anode during the fabrication process. As the SNM anode demonstrates poor electrochemical and electro-catalytic properties in the $H_2$ and $CH_4$ fuels, it was modified by applying a samarium-doped ceria (SDC) coating on its surface to improve the cell performance. As a result of this SDC modification, the cell performance improved from $39.4mW/cm^2$ to $117.7mW/cm^2$ in $H_2$ and from $15.9mW/cm^2$ to $66.6mW/cm^2$ in $CH_4$ at $850^{\circ}C$. The mixed ionic and electronic conductive property of the SDC provided electrochemical oxidation sites that are beyond the triple boundary phase sites in the SNM anode. In addition, the carbon deposition on the SDC thin layer was minimized due to the SDC's excellent oxygen ion conductivity.
Keywords
$Sr_2Ni_{1.8}Mo_{0.2}O_{6-{\delta}}$; Double Perovskite Structure; Alternative Anode; $Ce_{0.8}Sm_{0.2}O_2$; Carbon Deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. U. Din, Z.A. Zainal, Renew. Sust. Energ. Rev., 2017, 72, 1050-1066.   DOI
2 A. J. Jacobson, Chem. Mater., 2009, 22(3), 660-674.   DOI
3 J. Fergus, R. Hui, X. Li, D. P. Wilkinson, J. Zhang, Solid oxide fuel cells: Materials Properties and Performance, CRC press, 2008.
4 A.M. Abdalla, S. Hossain, A.T. Azad, P.M.I. Petra, F. Begum, S.G. Eriksson, A.K. Azad, Renew. Sust. Energ. Rev., 2018, 82, 353-368.   DOI
5 F.S. Silva, T.M. Souza, Int. J. Hydrogen Energ., 2017, 42(41), 26020-26036.   DOI
6 S.Al, G. Zhang, J.Electrochem. Sci. Technol., 2018, 9(3), 212-219.   DOI
7 S.P.S. Shaikh, A. Muchtar, M.R.Somalu, Renew. Sust. Energ. Rev., 2015, 51, 1-8.   DOI
8 A. Arshad, H. M. Ali, A. Habib, M.A. Bashir, M. Jabbal, Y. Yan, Therm. Sci. Eng. Prog., 2018, 9, 308-321.   DOI
9 D.K. Niakolas, Appl. Catal. A-Gen., 2014, 486, 123-142.   DOI
10 J.B. Goodenough, Y.H.Huang, J. Power Sources, 2007, 173(1), 1-10.   DOI
11 R.J. Gorte, J.M. Vohs, Curr. Opin. Colloid In., 2009, 14(4), 236-244.   DOI
12 B. S. Prakash, S.S. Kumar, S.T. Aruna, Renew. Sust. Energ. Rev., 2014, 36, 149-179.   DOI
13 C. Sun, U. Stimming, J. Power Sources, 2007, 171(2), 247-260.   DOI
14 H.S. Kim, S.P. Yoon, J.W. Yun, S.A. Song, S.C. Jang, S.W. Nam, Y.G. Shul, Int. J. Hydrog. Energ., 2012, 37(21), 16130-16139.   DOI
15 S. A. Saadabadi, A. T. Thattai, L. Fan, R. E. F. Lindeboom, H. Spanjers, P. V. Aravind, Renew. Energ., 2019, 134, 194-214.   DOI
16 Fuel Cell Handbook, 7th ed., EG&G Technical Servies, Inc. for NETL of U.S. Dept. of Energy, 2004.
17 H. Mohammed, A. Al-Othman, P. Nancarrow, M. Tawalbeh, M. E. H. Assad, Energy, 2019, 172, 207-219.   DOI
18 E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci., 2018, 429, 171-179.   DOI
19 E.K. Park, J.W. Yun, J.Electrochem. Sci. Technol., 2016, 7(1), 33-40.   DOI
20 J.M. Lee, J.W. Yun, Ceram. Int., 2016, 42(7), 8698-8705.   DOI
21 M.A. Gwan, J.W. Yun, J. Electroceram., 2018, 40(3), 171-179.   DOI
22 R.D. Shannon, Acta Crystallogr., 1976, 32(5), 751-767.   DOI
23 D. Papargyriou, J.T.S. Irvine, Sol. Stat. Ionics, 2016, 288, 120-123.   DOI
24 J.H. Kim, J.W. Yun, J. Electrochem. Sci. Technol., 2018, 9(2), 133-140.   DOI