Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.3.156

Hydriding Kinetics on Mg2NiHx-5wt% CaO Composites  

SHIN, HYO-WON (Department of Materials Science & Engineering, Korea National University of Transportation)
HWANG, JUNE-HYEON (Department of Materials Science & Engineering, Korea National University of Transportation)
KIM, EUN-A (Department of Materials Science & Engineering, Korea National University of Transportation)
HONG, TAE-WHAN (Department of Materials Science & Engineering, Korea National University of Transportation)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.3, 2021 , pp. 156-162 More about this Journal
Abstract
Mg hydride has a relatively high hydrogen storage amount of 7.6wt%, and inexpensive due to abundant resources, but has high reaction temperature and long reaction time because of treble oxidation reactivity and upper activation energy. Their range of applications could be further extended if their hydrogenation kinetics and degradation behavior could be improved. Therefore, the effect of CaO has improved the hydrogenation kinetics and slowed down the degradation. This study focused on investigating whether to improve the hydrogenation kinetics by synthesizing Mg2NiHx-5wt% CaO composites. The Mg2NiHx-5wt% CaO composites have been synthesized by hydrogen induced mechanical alloying. The synthesized composites were characterized by performing X-ray diffraction, Scanning Electron Microscopy, Brunauer-Emmett-Teller, Thermogravimetric, and Sivert's type automatic pressure-composition-temperature analysis. Hydriding kinetics were performed using an automatic PCT measurement system and evaluated over the temperature range of 423 K, 523 K, and 623 K. As a result of calculating the hydrogen adsorption amount through the hydrogenation kinetics curve, it was calculated as about 0.42wt%, 0.91wt%, and 1.15wt%, the highest at 623 K and the lowest at 423 K.
Keywords
Mg hydride; Hydrogen storage; Hydrogenation; Kinetics; Hydrogen induced mechanical alloying;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. T. Hwang and A. Varma, "Hydrogen storage for fuel cell vehicles", Current Opinion in Chemical Engineering, Vol. 5, 2014, pp. 42-48, doi: https://doi.org/10.1016/j.coche.2014.04.004.   DOI
2 C. Zhi, T. Chao, P. Hui, and Y. Huabin, "Rehydrogenation performance of an MgH2-Nb2O5 system modified by heptane and acetone", Int. J. Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 8289-8294, doi: https://doi.org/10.1016/j.ijhydene.2009.12.016.   DOI
3 W. N. Yang, C. X. Shang, and Z. X. Guo, "Site density effect of Ni particles on hydrogen desorption of MgH2", Int. J. Hydrogen Energy, Vol. 35, No. 10, 2010, pp. 4534-4542, doi: https://doi.org/10.1016/j.ijhydene.2010.02.047.   DOI
4 A. D. Rud and A. M. Lakhnik, "Effect of carbon allotropes on the stru ctu re and hyd rogen sorption du rin g reactive ball-milling of Mg-C powder mixtures", Int. J. Hydrogen Energy, Vol. 37, No. 5, 2012, pp. 4179-4187, doi: https://doi.org/10.1016/j.ijhydene.2011.11.123.   DOI
5 T. W. Hong, J. W. Lim, S. K. Kim, Y. J. Kim, and H. S. Park, "Effect of atmospheric hydrogen pressure on Mg2NiHx synthesis", Trans Korean Hydrogen New Energy Soc, Vol. 10, No. 1, 1999, pp. 27-40. Retrieved from https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=JAKO199921040976766&oCn=JAKO199921040976766&dbt=JAKO&journal=NJOU00291568.
6 Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, and H. K. Liu, "Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites", J. Alloy. Comp, Vol. 422, No. 1-2, 2006, pp. 299-304, doi: https://doi.org/10.1016/j.jallcom.2005.11.074.   DOI
7 S. K. Sahoo, S. Parveen, and J. J Panda, "The present and future of nanotechnology in human health care", Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 3, No. 1, 2007, pp. 20-31, doi: https://doi.org/10.1016/j.nano.2006.11.008.   DOI
8 L. Zaluski, A. Zaluska, P. Tessier, J. O. Strom-Olsen, and R. Schulz, "Catalytic effect of Pd on hydrogen absorption in mechanically alloyed M2Ni, LaNi5 and FeTi", J. Alloys Compd, Vol. 217, No. 2, 1995, pp. 295-300, doi: https://doi.org/10.1016/0925-8388(94)01358-6.   DOI
9 M. Dirnheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutflesich, and R. Bormann, "Hydrogen storage in magnesium-based hydrides and hydride composites", Scripta Mater, Vol. 56, No. 10, 2007, pp.841-846, doi: https://doi.org/10.1016/j.scriptamat.2007.01.003.   DOI
10 J. K. Lee and S. K. Kim, "Effect of CaO addition on the ignition resistance of Mg-Al alloys", Materials Transactions, Vol. 52, No. 7, 2011, pp. 1483-1488, doi: https://doi.org/10.2320/matertrans.M2010397.   DOI
11 S. Orimo, H. Fujii, K. Ikeda, Y. Fujikawa, and Y. Kitano, "Hydriding properties of a nano-/amorphous-structured Mg-Ni-H system", J. Alloys Compd, Vol. 253-254, 1997, pp. 94-97, doi: https://doi.org/10.1016/s0925-8388(96)02995-7.   DOI
12 T. S. Park and T. H. Lee, "The hydrogen binding property study by density functional theory for Zr, V, Fe and Al", Trans Korean Hydrogen New Energy Soc, Vol. 25, No. 6, 2014, pp. 602-608, doi: https://doi.org/10.7316/KHNES.2014.25.6.602.   DOI
13 X. Yao, C. Wu, A. Du, G. Q, Lu, H. Cheng, S. C. Smith, J. Zou, and Y. He, "Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage", J. Phys. Chem. B, Vol. 110, No. 24, 2006, pp. 11697-11703, doi: https://doi.org/10.1021/jp057526w.   DOI
14 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuiler, "Hydriding properties of a mechanically alloyed mixture with a composition M2Ni", Int. J. Hydrogen Energy, Vol. 10, No. 3, 1985, pp. 169-178, doi: https://doi.org/10.1016/0360-3199(85)90024-2.   DOI
15 C. Z. Wu, P. Wang, X. Yao, C. Liu, D. M, Chen, G. Q. Lu, and H. M. Cheng, "Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling", J. Alloys and Compounds, Vol. 420, No. 1-2, 2006, pp. 278-282, doi: https://doi.org/10.1016/j.jallcom.2005.10.028.   DOI
16 G. Liang, J. Huot, S. Boily, A. Van. Neste, and R. Schulz, "Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite", J. Alloys Compd, Vol. 291, No. 1-2, 1999, pp. 295-299, doi: https://doi.org/10.1016/S0925-8388(99)00268-6.   DOI
17 S. Orimo and H. Fujii, "Hydriding properties of the M2Ni-H system synthesized by reactive mechanical grinding", J. Alloys Compd, Vol. 232, No. 1-2, 1996, pp. L16-L19, doi: https://doi.org/10.1016/0925-8388(95)02079-9.   DOI
18 C. J. Koroneos and E. A. Nanaki, "Life cycle environmental impact assessment of a solar water heater", J. Cleaner Production, Vol. 37, 2012, pp. 154-161, doi: https://doi.org/10.1016/j.jclepro.2012.07.001.   DOI
19 C. Milanese, A. Girela, G. Bruni, P. Cofrancesco, V. Berbenni, P. Mateazi, and A. Marini, "Mg-Ni-Cu mixtures for hydrogen storage: a kinetic study", Intermetalics Vol. 18, No. 2, 2010, pp. 203-211, doi: https://doi.org/10.1016/j.intermet.2009.07.012.   DOI
20 J. F. Fernandez and C. R. Sanchez, "Rate determining step in the absorption and desorption of hydrogen by magnesium", J. Alloys Compd, Vol. 340, No. 1-2, 2002, pp. 189-198, doi: https://doi.org/10.1016/S0925-8388(02)00120-2.   DOI
21 N. Cui, P. He, and J. L. Luo, "Magnesium-based hydrogen storage materials modified by mechanical alloying", Acta Mater., Vol. 47, No. 14, 1999, pp. 3737-3743, doi: https://doi.org/10.1016/S1359-6454(99)00249-9.   DOI
22 D. Y. Goswami and F. Kreith "Energy conversion", CRC Press, 2007, pp. 2.1-2.21.
23 S. Y. Jang, K. M. Kang, O. Hayato, and K. Shigeharu, "Mg-based hydrogen storage alloy", The Industry and Technology of Gas, Vol. 6, No. 1, 2003, pp. 40-47. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE0205908.
24 K. I. Kim and T. W. Hong, "Evaluations of hydrogen properties on MgHx-Nb2O5 composite by mechanical alloying", Materials Science Forum, Vol. 620-622, 2009, pp. 9-12, doi: https://doi.org/10.4028/www.scientific.net/MSF.620-622.9.   DOI
25 M. W, Jung, J. H. Park, K. W. Cho, K. I. Kim, J. H. Chol, S. H. Kim, and T. W. Hong, "Hydrogenation properties of MgHx-V2O5 composites by hydrogen induced mechanical alloying", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 1, 2010, pp. 58-63.
26 C. A. Grimes, O. K. Varghese, and S. Ranjan, "Hydrogen generation by water splitting", Light, Water, Hydrogen, Springer, Germany, 2008, pp. 35-113.