Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.5.322

Interaction of oxygen with the ordered Ni3Al(111) alloy surface: adsorption and oxide islands formation at 800 K and 1000 K  

Kang, B.C. (Department of Chemistry and RIAN in Institute of Basic Science, Sungkyunkwan University)
Boo, J.H. (Department of Chemistry and RIAN in Institute of Basic Science, Sungkyunkwan University)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.5, 2007 , pp. 322-329 More about this Journal
Abstract
The interaction of oxygen with the ordered $Ni_3Al(111)$ alloy surface at 800 K and 1000 K has been investigated using LEED, STM, HREELS, UPS, and PAX. The clean $Ni_3Al(111)$ surface exhibits a "$2{\times}2$" LEED pattern corresponding to the ordered bulk-like terminated surface structure. For an adsorption of oxygen at 800 K, LEED shows an unrelated oxygen induced superstructure with a lattice spacing of $2.93\;{\AA}$ in addition to the ($1{\times}1$) substrate spots. The combined HREELS and the UPS data point to an oxygen chemisorption on threefold aluminum sites while PAX confirms an islands growth of the overlayer. Since such sites are not available on the $Ni_3Al(111)$ surface, we conclude the buildup of an oxygen covered aluminum overlayer. During oxygen exposure at 1000 K, however, we observe the growth of ${\gamma} structure on the reordered $Ni_3Al(111)$ substrate surface. This structure has been identified by means of HREELS and STM. The HREELS data will show that at 800 K the oxidation shows a very characteristic behavior that cannot be described by the formation of an $Al_2O_3$ overlayer. Moreover, the STM image shows a "Strawberry" structure due to the oxide islands formation at 1000 K. Conclusively, from the oxygen interaction with $Ni_3Al(111)$ alloy surface at 800 K and 1000 K an islands growth of the aluminum oxide overlayer has been found.
Keywords
Oxygen chemisorption; Ordered $Ni_3Al(111)$ alloy surface; LEED; STM; HREELS; UPS; PAX;
Citations & Related Records
연도 인용수 순위
  • Reference
1 U. Bardi, A. Atrei, and G. Rovida, Surf. Sci. 286, 87 (1992)
2 W. Eberhardt and F. J. Himpsel, Phys. Rev. Lett. 42, 1375 (1979)   DOI
3 P. O. Gartland, Surf. Sci. 62, 183 (1977)   DOI   ScienceOn
4 R. L. Strong, B. Firey, F. W. deWette, and J. L. Erskine, Phys. Rev. B26, 3482 (1982)
5 Y. Shen, D. J. O'Connor, and R. J. MacDonald, Surf. Interface Anal. 17, 903 (1991)   DOI
6 J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. Hoefer, and R. J. Behm, Phys. Rev. Lett. 62, 59 (1989)   DOI   ScienceOn
7 R. M. Jaeger, H, Kuhlenbeck, H. -J. Freund. M. Wuttig, W. Hoffmann. R. Franchy, and H. Ibach. Surf. Sci. 259, 235 (1991)   DOI   ScienceOn
8 R. Franchy, J. Masuch, and P. Gassmann, Appl, Surf. Sci. 93, 317 (1996)   DOI   ScienceOn
9 C. Becker, J. Kandler, H. Raaf, R. Linke, T. Pelster, M. Draeger, M. Tanemura, and K. Wandelt, J. Vac. Sci. Technol. A16, 1000 (1998)
10 R. L. Strong and J. L. Erskine, J. Vac. Sci. Technol. A3, 1428 (1985)
11 D. Sondicker, F. Jona, and P. M. Marcus, Phys. Rev. B34, 6770 (1986)
12 Y. Shen, D. J. O'Connor, and R. J. MacDonald, Nucl. Instr. & Meth. B67, 350 (1992)
13 J. Stoehr, L. I. Johansson, S. Brennan, M. Hecht, and J. N. Miller, Phys. Rev. B22, 4052 (1980)
14 K. Wandelt, J. Vac. Sci. Technol. A2, 802 (1984)