• 제목/요약/키워드: Ni corrosion

검색결과 483건 처리시간 0.026초

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • 제47권1호
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding (보수용접 모사 방법에 따른 원자로 배관 이종금속 맞대기 용접부 응력 분포)

  • Lee, Hwee-Seung;Huh, Nam-Su;Kim, Jin-Su;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제37권5호
    • /
    • pp.649-655
    • /
    • 2013
  • During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process.

Corrosion and Mechanical characteristics for 9Cr-1MoVNb Steel under SO2 gas environment (SO2 가스 환경 하에서 9Cr 템퍼드-마르텐사이트강의 부식 및 기계적 특성)

  • Jeong, Gwang-Hu;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.109-109
    • /
    • 2018
  • Cr-Mo 합금강은 고온 환경 하에서 높은 크리이프 강도와 우수한 내식성 때문에 발전설비, 석유 화학, 그리고 해양산업과 같은 여러 산업분야에서 널리 사용되고 있다. 특히, Cr-Mo 강의 내식성은 합금 내 Cr 함량에 크게 의존한다. 이는 고온에서 Cr과 O가 화학적 반응을 일으킴에 따라 보호성의 Cr 산화스케일을 형성하기 때문이다. 그러나 화석연료를 사용하는 발전설비의 경우, $SO_2$가 포함된 강한 부식성의 연소 가스가 배출되며, 이에 노출된 금속의 표면에서는 산화와 황화가 동시에 발생한다. 황화스케일은 산화스케일에 비해 매우 빠르게 성장하며, 그 특성이 매우 취약하기 때문에 황화 환경에서 금속의 내식성 및 기계적 물성치는 보다 크게 저하된다. 따라서 본 연구에서는 화력 발전소의 증기발생용 튜브 재료인 9Cr-1MoVNb 강을 선정하였으며, $SO_2$ 가스 환경 하에서의 부식 및 기계적 물성치 저하 특성을 평가하고자 하였다. 본 연구에서 사용된 9Cr-1MoVNb강의 화학 성분 조성은 0.1 C, 0.38 Si, 0.46 Mn, 0.25 Ni, 8.38 Cr, 0.93 Mo, 0.18 V, 0.09 Nb, 그리고 나머지는 Fe이다. 부식시험은 가공된 미소시험편과 인장시험편을 전기열처리로에 장입한 후, $650^{\circ}C$에서 $N_2+O_2+O_2+SO_2$ 조성의 가스를 분당 50 CC로 흘려주었다. 제작된 시험편에 대한 부식거동은 무게 증가량, optical microscope, scanning electron microsope, 그리고 energy dispersive x-ray spectrum을 통해 평가하였다. 그리고 기계적 물성치 평가를 위한 인장시험은 분당 2mm 변위제어를 통해 실시하였다. 그 결과, 9Cr-1MoVNb 강은 $SO_2$ 가스 환경 하에서 비 보호적인 Fe-풍부상의 산화 스케일층이 두껍게 형성됨에 따라 열악한 내식성을 나타냈다. 그에 따라 기계적 물성치는 저하되는 경향을 나타내었다.

  • PDF

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of Surface Science and Engineering
    • /
    • 제32권2호
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃ (950℃ 순수헬륨 분위기에서 크리프 파단된 Alloy 617의 미세구조적 고찰)

  • Lee, Gyeong-Geun;Jung, Su-Jin;Kim, Dae-Jong;Kim, Woo-Gon;Park, Ji-Yeon;Kim, Dong-Jin
    • Korean Journal of Materials Research
    • /
    • 제21권11호
    • /
    • pp.596-603
    • /
    • 2011
  • The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • 제26권3호
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings

  • Zheng, Yue;Dong, You;Chen, Bo;Anwar, Ghazanfar Ali
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.127-139
    • /
    • 2019
  • Residual drifts after an earthquake can incur huge repair costs and might need to replace the infrastructure because of its non-reparability. Proper functioning of bridges is also essential in the aftermath of an earthquake. In order to mitigate pounding and unseating damage of bridges subjected to earthquakes, a self-adaptive Ni-Ti shape memory alloy (SMA)-cable-based frictional sliding bearing (SMAFSB) is proposed considering self-adaptive centering, high energy dissipation, better fatigue, and corrosion resistance from SMA-cable component. The developed novel bearing is associated with the properties of modularity, replaceability, and earthquake isolation capacity, which could reduce the repair time and increase the resilience of highway bridges. To evaluate the super-elasticity of the SMA-cable, pseudo-static tests and numerical simulation on the SMA-cable specimens with a diameter of 7 mm are conducted and one dimensional (1D) constitutive hysteretic model of the SMAFSB is developed considering the effects of gap, self-centering, and high energy dissipation. Two types of the SMAFSB (i.e., movable and fixed SMAFSBs) are applied to a two-span continuous reinforced concrete (RC) bridge. The seismic vulnerabilities of the RC bridge, utilizing movable SMAFSB with the constant gap size of 60 mm and the fixed SMAFSBs with different gap sizes (e.g., 0, 30, and 60 mm), are assessed at component and system levels, respectively. It can be observed that the fixed SMAFSB with a gap of 30 mm gained the most retrofitting effect among the three cases.

CO2/CH4 Separation in Metal-organic Frameworks: Flexibility or Open Metal Sites? (금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구)

  • Jung, Minji;Oh, Hyunchul
    • Membrane Journal
    • /
    • 제28권2호
    • /
    • pp.136-141
    • /
    • 2018
  • Carbon dioxide ($CO_2$) exists not only as a component of natural gas, biogas, and landfill gas, but also as a major combustion product of fossil fuels which leads to a major contributor to greenhouse gases. Hence it is essential to reduce or eliminate carbon dioxide ($CO_2$) in order to obtain high fuel efficiency of internal combustion engine, to prevent corrosion of gas transportation system, and to cope with climate change preemptively. In recent years, there has been a growing interest in not only conventional membrane-based separation but also new adsorbent-based separation technology. Particularly, in the case of metal-organic frameworks (MOFs), it has been received tremendous attentions due to its unique properties (eg : flexibility, gate effect or strong binding site such as open metal sites) which are different from those of typical porous adsorbents. Therefore, in this study, stereotype of two MOFs have been selected as its flexible MOFs (MIL-53) representative and numerous open metal sites MOFs (MOF-74) representative, and compared each other for $CO_2/CH_4$ separation performance. Furthermore, varying and changeable separation performance conditions depending on the temperature, pressure or samples' unique properties are discussed.

Evaluation of a metal level in non-precious metal alloys dental casting having beryllium by lactic acid Solution (베릴륨함유 치과 주조용 비귀금속 합금의 젖산용액에 의한 금속 노출수준 평가)

  • Park, Soo-Chul;Jang, Eun-Jin;Han, Sok-Yoon
    • Journal of Technologic Dentistry
    • /
    • 제33권2호
    • /
    • pp.121-128
    • /
    • 2011
  • Purpose: The purpose of this study is to investigate the level of each metal in non-precious metal alloys dental casting, still used even banned for use and trade by the law, for oral health. Methods: Two kinds of metal alloys were analyzed. One was Ticonium 100 for removable prosthesis and the other was Rexillium V for dental porcelain. Two samples of each metal alloy were made in 0.5g, 1.0g, and 1.5g. Total number of samples were 12. Two kinds of lactic acid Solution, pH7 and pH4.6, were injected into each samples. After injection, each samples had been for 21days ${\pm}$ 1 hour in the water tank of which temperature was $37^{\circ}C$. The level of metal was measured in each sample by inductively couplled plasma-atomic emission spectrometer. Results: In both metal alloys, metals, chrome, nickel, beryllium, and molybdenum, were founded. In Ticonium 1000, the highest level of nickel was 2.531ppm in 1.5g pH4.6 sample while the highest level of nickel was 4.062ppm in 1.5g pH4.6 sample of Rexillium V. In chemical composition of these methal alloys, chrome(14~17%) was much more than beryllium(1.95~1.99%) and molybdenum(5.0~9.0%) but berllium and molybdenum were founded more than chrome in samples. Therefore, chrome showed better anti-corrosion than other metal alloys. In both metal alloys, more metals were founded in higher pH level and more mass. Levels of chrome was significantly different in samples of both metal alloys in each pH level(p<0.05). Levels of nickels was significantly different in samples of both metal alloys in each pH level(p<0.05). Conclusion: For oral health, further studies are needed in nickel-chrome metal alloy and cobalt metal alloy of non-beryllium in addittion to beryllium metal alloy and also long-term studies needed in various period and other non-percious metal alloys for dental casting.

Dispersion Method of Silica Nanopowders for Permalloy Composite Coating (퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구)

  • Park, So-Yeon;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제18권4호
    • /
    • pp.39-42
    • /
    • 2011
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability, surface wear resistance, corrosion protection. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and current densities. The optimum current density was 20 $mA/cm^2$ and the silica content was 9 at% at $50^{\circ}C$. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In the bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.