Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.11.596

Microstructural Investigation of Alloy 617 Creep-Ruptured in Pure Helium Environment at 950℃  

Lee, Gyeong-Geun (Korea Atomic Energy Research Institute Nuclear Materials Division)
Jung, Su-Jin (Korea Atomic Energy Research Institute Nuclear Materials Division)
Kim, Dae-Jong (Korea Atomic Energy Research Institute Nuclear Materials Division)
Kim, Woo-Gon (Korea Atomic Energy Research Institute Nuclear Materials Division)
Park, Ji-Yeon (Korea Atomic Energy Research Institute Nuclear Materials Division)
Kim, Dong-Jin (Korea Atomic Energy Research Institute Nuclear Materials Division)
Publication Information
Korean Journal of Materials Research / v.21, no.11, 2011 , pp. 596-603 More about this Journal
Abstract
The very high temperature gas reactor (VHTR) is one of the next generation nuclear reactors for its safety, long-term stability, and proliferation-resistance. The high operating temperature of over 800$^{\circ}C$ enables various applications with high energy efficiency. Heat is transferred from the primary helium loop to the secondary helium loop through the intermediate heat exchanger (IHX). The IHX material requires creep resistance, oxidation resistance, and corrosion resistance in a helium environment at high operating temperatures. A Ni-based superalloy such as Alloy 617 is considered as a primary candidate material for the intermediate heat exchanger. In this study, the microstructures of Alloy 617 crept in pure helium and air environments at 950$^{\circ}C$ were observed. The rupture time in helium was shorter than that in air under small applied stresses. As the exposure time increased, the thickness of outer oxide layer of the specimens clearly increased but delaminated after a long creep time. The depth of the carbide-depleted zone was rather high in the specimens under high applied stress. The reason was elucidated by the comparison between the ruptured region and grip region of the samples. It is considered that decarburization caused by minor gas impurities in a helium environment caused the reduction in creep rupture time.
Keywords
VHTR; helium; Alloy 617; creep; microstructure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 H. -C. Kwon, D. -J. Kim, H. P. Kim, J. Y. Park and S. D. Hong, Kor. J. Mater. Res., 21(1), 1 (2011) (in Korean).   DOI   ScienceOn
2 W. J. Lee, Y. W. Kim and J. Chang, Nucl. Eng. Technol. 41(4), 413 (2009).
3 T. C. Totemeier and H. Tian, Mater. Sci. Eng., 468-470, 81 (2007).   DOI   ScienceOn
4 W. -G. Kim, S. -N. Yin and G. -H. Koo, Met. Mater. Int., 15(5), 727 (2009).   DOI   ScienceOn
5 S. Kihara, J. B. Newkirk, A. Ohtomo and Y. Saiga, Metall. Mater. Trans., 11, 1019 (1980).   DOI
6 J. Bouchard and R. Bennett, Nucl. Plant J., 26(5), 42 (2008).
7 W. Ren and R Swimdeman, J. Press. Vess. Tech., 131, 024002 (2009).   DOI   ScienceOn
8 Special Metals Publication, Number SMC-029, INCONEL Alloy 617 (2005). Special Metals Publication, Number SMC-029, INCONEL Alloy 617, (2005). Special Metals on the web. Retrieved Sep. 10, 2011 from http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf.
9 B. Huchtemann, Mater. Sci. Eng., 120-121, 623 (1989).   DOI   ScienceOn
10 H. -J. Christ, U. Kunecke, K. Meyer and G. Sockel, Mater. Sci. Eng., 87, 161 (1987).   DOI   ScienceOn
11 R. H. Cook, Nucl. Tech., 66, 283 (1984).
12 Y. Hosoi and S. Abe, Metall. Mater. Trans., 6A, 1171 (1975).
13 P. S. Shankar and K. Natesan, J. Nucl. Mater., 366, 28 (2007).   DOI   ScienceOn
14 F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007).   DOI   ScienceOn
15 C. Cabet and F. Rouillard, J. Nucl. Mater., 392, 235 (2009).   DOI   ScienceOn
16 T. S. Jo, S. -H. Kim, D. -G. Kim, J. Y. Park and Y. D. Kim, Met. Mater. Int., 14(6), 739 (2008).   DOI   ScienceOn
17 C. Jang, D. Lee and D. Kim, Int. J. Pres. Ves. Pip., 85, 368 (2008).   DOI   ScienceOn
18 D. Kim, C. Jang and W. S. Ryu, Oxid. Met., 71, 271 (2009).   DOI   ScienceOn
19 D. -J. Kim, G. -G. Lee, S. W. Kim and H. P. Kim, Corrosion Sci. Tech., 9(4), 164 (2010).
20 D. -J. Kim, G. -G. Lee, S. J. Jeong, W. -G. Kim and J. Y. Park, Nucl. Eng. Technol., 43(5), 429 (2011).   DOI   ScienceOn