• Title/Summary/Keyword: Ni corrosion

Search Result 475, Processing Time 0.024 seconds

Corrosion Behavior of TiN Ion Plated Steel Plate(II)-Effects of Ni and Ni/Ti interlayers- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구 (II)-Ni 및 Ni-Ti 하지코팅의 영향-)

  • 한전건;연윤모;홍준희
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.82-89
    • /
    • 1992
  • The effect of interlayer coating of Ni and Ti on corrosion behavior was studied in TiN ion plated steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating of $2\mu\textrm{m}$. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Porosity of each coating was also tested by using SO2 test. Corrosion resistance was improved with increasing the thickness of Ni interlayer coating and Ni-Ti interlayer coating markedly enhanced the corrosion resistance. Ni/Ti interlayer coating of $2\mu\textrm{m}$/2$\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 1. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ni and Ti interlayers, Ni/Ti interlayers coating were also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • 임우조;홍성희;윤병두
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.344-350
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

  • PDF

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • U-J Lim;S-H Hong;B-D Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.345-345
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

High Temperature SO2-gas Corrosion of Fe-18%Cr-10%Ni Steels for Coal-fired Power Plant (화력발전소용 Fe-18%Cr-10%Ni 강의 고온 SO2 가스 부식)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.219-224
    • /
    • 2007
  • The corrosion characteristics of Fe-18Cr-10Ni steels were studied between $600^{\circ}C$ and $1000^{\circ}C$ in Ar+(0.2, 1)%$SG_2$ gas for up to 300 hr in order to employ Fe-18Cr-10Ni steels in the coal-fired power plants. The corrosion resistance of Fe-18Cr-10Ni steels was good due mainly to the high amount of Cr, which formed $Cr_2O_3$ from the initial corrosion stage. Fe in the steels corroded to mainly $Fe_2O_3$ and $Fe_3O_4$. Ni was not susceptible to corrosion under the current corrosion condition. Relatively thin, single-layered scales formed.

Effects of Ni Coating on the Surface Characteristics of Drawed Stainless Steel Wire (인발가공된 스테인리스강선의 표면특성에 미치는 Ni코팅의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2003
  • The stainless steel wire requires good corrosion resistance and mechanical properties, such as drawing ability, combined with a high resistance to corrosion. For increasing drawing ability of stainless steel, Ni coating methods have been used in this study. However, there is no information on the electrochemical corrosion behavior of drawed wires after Ni coating. To investigate corrosion resistance and mechanical property of drawed wire, the characteristics of Ni coated wires have been determined by tensile strength tester, hardness tester, field emission scanning microscope, energy dispersive x-ray analysis and potentiodynamic method in 0.1 M HCl. The drawed stainless steel wires showed the strain-induced martensitic structure, whereas non-drawed stainless steel wire showed annealing twin in the matrix of austenitic structure. The hardness and tensile strength of drawed stainless steel wire were higer than that of non-drawed stainless steel wire. Electrochemical measurements showed that, in the case of drawed stainless steel o ire after Ni coating, the corrosion resistance and pitting potential increased compared with non-coated and drawed stainless steel wire due to decrease in the surface roughness.

Electrochemical Properties of NiO-YSZ Thin Films on 316 Stainless Steel Bipolar Plates Under a Simulated PEMFC Environment

  • Lee, W.G.;Jang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1177-1182
    • /
    • 2012
  • The corrosion resistance of 316L stainless steel coated with NiO-YSZ (Ni added yttria stabilized zirconia) was examined in a proton exchange membrane fuel cell (PEMFC) environment. The NiO-YSZ coating was carried out using a sol-gel dip coating method, and the corrosion resistance and interfacial contact resistance (ICR) were determined by the composition and morphology of the NiO-YSZ film. The corrosion resistance increased with increasing Ni content in the NiO-YSZ film, but rapid corrosion was observed when the YSZ film contained more than 15 wt % Ni due to surface cracks. The polarization resistance was improved by several orders of magnitude when 316L stainless steel was coated with a 15 wt % NiO-YSZ film compared to bare 316L. The ICR of the NiO-YSZ film was decreased to that of bare 316L when the YSZ film contained 25 wt % NiO, suggesting the possible application of NiO-YSZ coated stainless steel for a bipolar plate.

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

Effect of the Heat treatment and Boron on the Hot Corrosion Resistance of the Al Diffusion Coating (Al 확산피복층의 고온 내식성에 미치는 후열처리와 B첨가의 영향)

  • 김태원;윤재홍;이재현;김현수;변응선
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The Ni base superalloy Mar-M247 substrate was aluminized or aluminized after boronizing by the pack cementation under Ar atmosphere. The hot corrosion resistance and after-heat-treatment effect of aluminized specimens were studied by the cyclic hot corrosion test in $Na_2SO_4$-NaCl molten salt. XRD analysis showed that the $Ni_2Al_3$ phase was formed between the coated layer and substrate below 1273K but the NiAl phase above 1273K. The peak of the NiAl phase was developed after heat treatment. Corrosion test showed that corrosion resistance of the specimen with the NiAl phase was better than that with the $Ni_2Al_3$ phase. Corrosion resistance could be improved by heat treatment to form ductile NiAl phase, where cracks were not formed by thermal shock on coating layer. Moreover, it appeared that heat treatment played a role to improve corrosion resistance of Al diffusion coating above 1273K. The existence of boron in the Al diffusion coating layer obstructed outwared diffusion of Cr from the substrate, and it influenced on corrosion resistance of the coating layer by weakening adherence of the oxide scale.

  • PDF

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

The Effect of Temperature on Corrosion of Absorption Refrigeration Systems Using $LiBr-H_2O$ Working Fluids ($LiBr-H_2O$계 흡수식냉동기의 부식에 미치는 온도의 영향)

  • 임우조;정기철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.125-131
    • /
    • 2002
  • This paper was studied on the effect of temperature on corrosion of absorption refrigeration systems using $LiBr-H_2O$ working fluids. In the fresh water and 62 % lithium bromide solution at $70^{\circ}C$, polarization test of SS 400, Cu(C1220T-OL) and Al-Ni bronze was carried out. And polarization behavior, polarization resistance characteristics, corrosion rate(mmpy) and corrosion sensitivity of materials forming absorption refrigeration systems was considered. The main results are as following: (1) As the experimental temperature increase, the change of corrosion rate of Al-Ni bronze become duller than SS 400 and Cu in 62% lithium bromide solution. (2) According as corrosion environment is changed from fresh water to 62% lithium bromide solution, potential change of Cu and Al-Ni bronze become less noble than SS 400. (3) The corrosion sensitivity of Al-Ni bronze was duller than that of Cu and SS 400 in 62% LiBr solution.