• Title/Summary/Keyword: Next generation manufacturing

Search Result 169, Processing Time 0.034 seconds

Design, Fabrication and Evaluation of Diamond Tip Chips for Reverse Tip Sample Scanning Probe Microscope Applications (탐침과 시편의 위치를 역전시킨 주사 탐침 현미경용 다이아몬드 탐침의 제작 및 평가)

  • Sugil Gim;Thomas Hantschel;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2024
  • Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.

A Study on the Expansion of Secondary Battery Manufacturing Technology through the Scale of V4 and Energy Platform (V4와 에너지 플랫폼 규모화를 통한 2차 전지 제조 기술 확대 방안)

  • Seo, Dae-Sung
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.87-94
    • /
    • 2022
  • This paper seeks to raise inflection points of battery manufacturing bases in Korea in the V4 region through the reorganization of new industrial technologies in accordance with ESG. As a result, the global supply chain market is cut off. The Russian-Ukraine war and the U.S.-China hegemony are competing in the economic crisis caused by COVID-19. It is showing diversification of new suppliers in an environment where mineral, grain procurement, gas, and even wheat imports from China and Russia are not possible. As a protective glocal, this area is used as a buffer zone(Pro-Russia, Hungary). to an isolated zone(anti-Russia, Poland) by war. In this paper, economic growth is expected to slow further due to the EU tapering period and high inflation in world countries. Due to these changes, the conversion of new tech industry and the contraction of Germany's structure due to energy supply may lose the driving force for economic growth over the past 20 years. This is caused by market disconnection(chasm) in the nominal indicators in this area. On the other hand, Korea should actively develop into the V4 area as an energy generation export (nuclear and electric hydrogen generation) area as a bypass development supply area due to the imbalance in the supply chain of rare earth materials that combines AI. By linking this industry, the energy platform can be scaled up and reliable supply technology (next generation BT, recycling technology) in diversification can be formed in countries around the world. This paper proves that in order to overcome the market chasm caused by the industries connection, new energy development and platform size can be achieved and reliable supply technology (next-generation battery and recycling technology, Low-cost LFP) can be diversified in each country.

Planarization of Cu intereonnect using ECMP process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Lee, Ho-Jun;Oh, Ji-Heon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF

A Design Communication System for Message Protection in Next Generation Wireless Network Environment (차세대 무선 네트워크 환경에서 메시지 보호를 위한 통신 시스템 설계)

  • Min, So-Yeon;Jin, Byung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4884-4890
    • /
    • 2015
  • These days most of people possesses an average of one to two mobile devices in the world and a wireless network market is gradually expanding. Wi-Fi preference are increasing in accordance with the use growth of mobile devices. A number of areas such as public agencies, health care, education, learning, and content, manufacturing, retail create new values based on Wi-Fi, and the global network is built and provides complex services. However, There exist some attacks and vulnerabilities like wireless radio device identifier vulnerability, illegal use of network resources through the MAC forgery, wireless authentication key cracking, unauthorized AP / devices attack in the next generation radio network environment. In addition, advanced security technology research, such as authentication Advancement and high-speed secure connection is not nearly progress. Therefore, this paper designed a secure communication system for message protection in next-generation wireless network environments by device identification and, designing content classification and storage protocols. The proposed protocol analyzed safeties with respect to the occurring vulnerability and the securities by comparing and analyzing the existing password techniques in the existing wireless network environment. It is slower 0.72 times than existing cypher system, WPA2-PSK, but enforces the stability in security side.

Functional Nanochannels to Control Ion Transportation with Monomolecule Selectivity (단일 이온 인식형 이송 제어 기능성 나노채널 기술)

  • Kim, Jeong Hwan;Lee, Eung-Sug;Whang, Kyung-Hyun;Yoo, Yeong-Eun;Yoon, Jae-Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • Functional nanochannels were fabricated in order to control selective ion transportation with high permeability and low energy consumption. In this research, nanochannel platform fabrication process and surface functionalization process were developed. In addition, selective ion transportation and concentration measurement system was also set-up. By using fabricated multilayer metal membrane with electrical bias, 95% of ion ($Cl^-$) was blocked. This developed process is new-conceptional membrane fabrication technology and is expected to be applied to next-generation water purification/desalination, portable artifical kidney, and artificial sense organ.

A Trapping Behavior of GaN on Diamond HEMTs for Next Generation 5G Base Station and SSPA Radar Application

  • Lee, Won Sang;Kim, John;Lee, Kyung-Won;Jin, Hyung-Suk;Kim, Sang-Keun;Kang, Youn-Duk;Na, Hyung-Gi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2020
  • We demonstrated a successful fabrication of 4" Gallium Nitride (GaN)/Diamond High Electron Mobility Transistors (HEMTs) incorporated with Inner Slot Via Hole process. We made in manufacturing technology of 4" GaN/Diamond HEMT wafers in a compound semiconductor foundry since reported [1]. Wafer thickness uniformity and wafer flatness of starting GaN/Diamond wafers have improved greatly, which contributed to improved processing yield. By optimizing Laser drilling techniques, we successfully demonstrated a through-substrate-via process, which is last hurdle in GaN/Diamond manufacturing technology. To fully exploit Diamond's superior thermal property for GaN HEMT devices, we include Aluminum Nitride (AlN) barrier in epitaxial layer structure, in addition to conventional Aluminum Gallium Nitride (AlGaN) barrier layer. The current collapse revealed very stable up to Vds = 90 V. The trapping behaviors were measured Emission Microscope (EMMI). The traps are located in interface between Silicon Nitride (SiN) passivation layer and GaN cap layer.

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

Development of Levitation Control for High Accuracy Magnetic Levitation Transport System (초정밀 자기부상 이송장치의 부상제어기 개발)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Lim, Jaewon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.557-561
    • /
    • 2016
  • Recently, in the manufacturing process of flat panel displays, mass production methods of inline system has been emerged. In particular the next generation OLED display manufacturing process, horizontal inline evaporation process has been tried. It is important for the success of OLED inline evaporation process to develop a magnetic levitation transport system capable of transferring a carrier equipped with a mother glass with high accuracy without any physical contact along the rail under vacuum condition. In the case of existing wheel-based transfer system, it is not suitable for OLED evaporation process requiring high cleanliness. On the other hand, the magnetic levitation transport system has an advantage that it does not generate any dust and it is possible to achieve high-precision control because there are not non-linear factors such as friction force. In this paper, we introduce the high-precision magnetic levitation transport system, which is currently under development, for OLED evaporation process.

Horizontal Integration between Cyber Physical System Based on Industry 4.0 and Manufacture Execution Systems through Middleware Building (인더스트리4.0 기반 사이버물리시스템과 생산관리시스템간의 미들웨어 구축을 통한 수평적 통합)

  • Kim, Dae-Geun;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1484-1493
    • /
    • 2014
  • Recently, Industry 4.0 (next generation industrial revolution) designed by Germany to retain initiative in manufacturing business is actively studied. Goal of Industry 4.0 is 'Smart factory' which manages progress of production, supply logistics and services. To achieve the goal, we can construct value creation and new business model by integrating organically with production management systems which is existing and cyber-physical systems, Internet of Things, Services Internet and sensor, etc. However, if integration with production management systems does not work effectively by adding and developing new technologies, It does not have performance. Hence, in this research, we will analysis Industry 4.0 which is possible for small quantity batch production and one of the light and flexible manufacturing systems, and based on this, we will suggest methodology to horizontally integrate with production management systems.

UV/Thermal Hybrid Nanoimprint System for Flexible Substrates (유연기판을 위한 UV/Thermal 하이브리드방식 나노임프린트 시스템)

  • Lim, Hyung-Jun;Lee, Jae-Jong;Choi, Kee-Bong;Kim, Gee-Hong;Ahn, Hyun-Jin;Ryu, Ji-Hyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.245-250
    • /
    • 2011
  • An UV/thermal hybrid nanoimprint lithography system was designed and implemented for the pattern transfer to flexible substrates. This system can utilize a plate stamp, roll stamp, and film stamp. For all cases of using those stamps, this system is also switchable an UV or thermal nanoimprint lithography mode. This paper shows how to design the heating and UV curing plates and proposes how to change them easily. Because the pressure condition and the speed of the press roller varies by the characteristics of the stamp and substrate, all the parameters related to the nanoimprint lithography have to adjustable. Some transferred patterns are shown in this paper to verify the performance of the hybrid nanoimprint lithography system. The flexible substrates with nano-scale patterns on them will be key components for next generation technologies such as flexible displays, bendable semi-conductors, and solar cells.