• Title/Summary/Keyword: Next generation manufacturing

Search Result 169, Processing Time 0.03 seconds

Development of Cu CMP process for Cu-to-Cu wafer stacking (Cu-to-Cu 웨이퍼 적층을 위한 Cu CMP 특성 분석)

  • Song, Inhyeop;Lee, Minjae;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.81-85
    • /
    • 2013
  • Wafer stacking technology becomes more important for the next generation IC technology. It requires new process development such as TSV, wafer bonding, and wafer thinning and also needs to resolve wafer warpage, power delivery, and thermo-mechanical reliability for high volume manufacturing. In this study, Cu CMP which is the key process for wafer bonding has been studied using Cu CMP and oxide CMP processes. Wafer samples were fabricated on 8" Si wafer using a damascene process. Cu dishing after Cu CMP and oxide CMP was $180{\AA}$ in average and the total height from wafer surface to bump surface was approximately $2000{\AA}$.

Development of Product Management System for Higher-Value-Added Bicycle (고부가가치 자전거 개발을 위한 제품모델 및 관리시스템 개발)

  • Lee, Philippe;Hwang, In-Hyuck;Woo, Jong-Hun;Park, Se-Won;Oh, Dae-Kyun;Lee, Gyu-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.469-477
    • /
    • 2011
  • Nowadays, environmentally friendly technology is attracting considerable attention because of environmental pollution and the increasing price of raw materials. Korea has a high level of dependence on exports, and therefore it has stressed the development of environmentally friendly technologies. Bicycle manufacturing industry has a bright future because bicycles do not use fossil fuels, and cycling is good for one's health. We develop a management system for the effective development of next-generation environmentally friendly technology for bicycles. The goal is to promote the bicycle industry in Korea while keeping the product in the low to medium price range.

Developing a STEP-NC Prototype based on ISO 14649 Paradigm (ISO14649 패러다임에 입각한 STEP-NC 프로토타입 시스템 개발)

  • Seo, Seok-Hwan;Jo, Jeong-Hun;Jeong, Dae-Hyeok;Lee, Byeong-Eon;Cheon, Sang-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.171-179
    • /
    • 2002
  • STEP-NC is the next generation CNC controller taking STEP-based data model as the interface scheme (or language) between CAM and CNC, and carrying out various intelligent functions. At the moment, efforts are being made worldwide to establish international standard for the new interface scheme formalized as ISO14649. As the new language is being established, increasing attention is being paid to the development of the new CNC. Korea STEP-NC is an integrated STEP-NC system taking ISO 14649 as an input, and carrying out various intelligent functions. It is composed of 5 modules: 1) Shop Floor Programming System (PosSFP), 2) Tool Path Generator (PosTPG), 3) Tool Path Viewer (PosTPV), 4) Man Machine Interface (PosMMI), and 5) CNC Kernel (PosCNC). Distinguished from other prototypes (of Europe and USA), the Korea STEP-NC is top-down designed, and bottom-up implemented comprehensively incorporating all the crucial components for realizing the full benefit of STEP-NC paradigm, without using any existing commercial CAD/CAM systems and CNC kernels. The Korea STEP-NC prototype was successfully demonstrated and evaluated in the ISO conventions Together with prototypes of Europe and USA, Korea STEP-NC will be used as a reference system fur the Triangular Conformance Test to be jointly carried out by ISO TC184 SC1, SC4, and IMS Project.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIFFRACTED LIGHT SIMULATION AND TEST RESULTS FOR A CONE OCCULTER WITH TAPERED SURFACE

  • Yang, Heesu;Bong, Su-Chan;Cho, Kyung-Suk;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Baek, Ji-Hye;Nah, Jakyoung;Sun, Mingzhe;Gong, Qian
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.27-36
    • /
    • 2018
  • In a solar coronagraph, the most important component is an occulter to block the direct light from the disk of the sun. Because the intensity of the solar outer corona is $10^{-6}$ to $10^{-10}$ times of that of the solar disk ($I_{\odot}$), it is necessary to minimize scattering at the optical elements and diffraction at the occulter. Using a Fourier optic simulation and a stray light test, we investigated the performance of a compact coronagraph that uses an external truncated-cone occulter without an internal occulter and Lyot stop. In the simulation, the diffracted light was minimized to the order of $7.6{\times}10^{-10}I_{\odot}$ when the cone angle ${\theta}_c$ was about $0.39^{\circ}$. The performance of the cone occulter was then tested by experiment. The level of the diffracted light reached the order of $6{\times}10^{-9}I_{\odot}$ at ${\theta}_c=0.40^{\circ}$. This is sufficient to observe the outer corona without additional optical elements such as a Lyot stop or inner occulter. We also found the manufacturing tolerance of the cone angle to be $0.05^{\circ}$, the lateral alignment tolerance was $45{\mu}m$, and the angular alignment tolerance was $0.043^{\circ}$. Our results suggest that the physical size of coronagraphs can be shortened significantly by using a cone occulter.

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery (기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향)

  • Kim, Jong Heon;Xiao, Cheng-Fan;Go, Kwangmo;Lee, Kyung Jin;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Research trend in Fabrication of Metastable-phase Iron Nitrides for Hard Magnetic Applications (준안정상 기반의 질화철계 영구자석소재 제조연구동향)

  • Kim, Kyung Min;Lee, Jung-Goo;Kim, Kyung Tae;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.146-155
    • /
    • 2019
  • Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, $a^{{\prime}{\prime}}-Fe_{16}N_2$ has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant ($K_1=1.0MJ/m^3$). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of $a^{{\prime}{\prime}}-Fe_{16}N_2$. Future research prospects are also offered with patent trends observed thus far.

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.

Influence of UHD(Ultra High Definition) Video Technology on the Documentary Production Process (UHD(Ultra High Definition)영상기술이 다큐멘터리 제작과정에 미치는 영향)

  • Jeon, Min-gyu;Choi, Won-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.513-515
    • /
    • 2014
  • Ultra High Definition(hereafter UHD), Next-generation video technology, was quickening in the request of many years of the recipient and the authors who have been towards the higher sense of reality. The change of the medium has resulted in a mutation in the detailed content and the point of view overlooking the world as evidenced through the history. Thus the emergence of UHD will also be expected to require to manufacture unique technology. Therefore, this paper, especially in the documentary among the video content, tries to study the changes in the manufacturing process by UHD video technology. Moreover UHD video screen technology such as high resolution tries to analyse for the fitness for purpose of the documentary that transmission of the accuracy and the change from a documentary video production. In addition, I try to explore the improvement in the choice of shooting material expected to be a problem, even for the advance of the work on the second half and backup according to the enormous data. We derive the developmental aspects that UHD video technology in documentary production is brought about by the research plan described above. It is intended to contribute to the development of content production with the development of technology.

  • PDF

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.