Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.2.146

Research trend in Fabrication of Metastable-phase Iron Nitrides for Hard Magnetic Applications  

Kim, Kyung Min (Powder&Ceramics Division, Korea Institute of Materials Science)
Lee, Jung-Goo (Powder&Ceramics Division, Korea Institute of Materials Science)
Kim, Kyung Tae (Powder&Ceramics Division, Korea Institute of Materials Science)
Baek, Youn-Kyoung (Powder&Ceramics Division, Korea Institute of Materials Science)
Publication Information
Journal of Powder Materials / v.26, no.2, 2019 , pp. 146-155 More about this Journal
Abstract
Rare earth magnets are the strongest type of permanent magnets and are integral to the high tech industry, particularly in clean energies, such as electric vehicle motors and wind turbine generators. However, the cost of rare earth materials and the imbalance in supply and demand still remain big problems to solve for permanent magnet related industries. Thus, a magnet with abundant elements and moderate magnetic performance is required to replace rare-earth magnets. Recently, $a^{{\prime}{\prime}}-Fe_{16}N_2$ has attracted considerable attention as a promising candidate for next-generation non-rare-earth permanent magnets due to its gigantic magnetization (3.23 T). Also, metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ exhibits high tetragonality (c/a = 1.1) by interstitial introduction of N atoms, leading to a high magnetocrystalline anisotropy constant ($K_1=1.0MJ/m^3$). In addition, Fe has a large amount of reserves on the Earth compared to other magnetic materials, leading to low cost of raw materials and manufacturing for industrial production. In this paper, we review the synthetic methods of metastable $a^{{\prime}{\prime}}-Fe_{16}N_2$ with film, powder and bulk form and discuss the approaches to enhance magnetocrystalline anisotropy of $a^{{\prime}{\prime}}-Fe_{16}N_2$. Future research prospects are also offered with patent trends observed thus far.
Keywords
Iron nitride; Metastable; Permanent magnet; Nitridation; Rare-earth free;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Xu, Q. Wu, M. Yue, C. Li, H. Li and S. Palaka: AIP Advances, 8 (2018) 056422.   DOI
2 Y. K. Baek, Y. T. Seo, J. G. Lee, D. S. Kim, D. S. Bae and C. J. Choi: J. Korean Powder Metall. Inst., 20 (2013) 359.   DOI
3 O. Gutfleisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar, and J. P. Liu: Adv. Mater., 23 (2011) 821.   DOI
4 S. Sugimoto: J. Phys. D: Appl. Phys., 44 (2011) 064001.   DOI
5 D. Brown, B. Ma, and Z. Chen: J. Magn. Magn. Mater., 248 (2002) 432.   DOI
6 Humphries: M. Rare earth elements: The global supply chain. CRS Report for Congress, R41347 (Congressional Research Service, Library of Congress, 2010).
7 A. Mubarok, N. Bordeaux, E. Poirier, F. E. Pinkerton, J. Gattacceca, P. Rochette, R. Reisener, L. H. Lewis and J. I. Goldstein: Meteoritics Planet Sci., 76 (2013).
8 W. Zhang, P. Kharel, V. Valloppilly, L. Yue and D. J. Sellmyer: Phys. Status Solidi B, 252 (2015) 1934.   DOI
9 W. Xie, E. Polikarpov, J. P. Choi, M. E. Bowden, K. Sun and J. Cui: J. Alloys Compd., 680 (2016) 1.   DOI
10 J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian and D. Sellmyer: Acta Mater., 158 (2018) 118.   DOI
11 M. Takahashi, H. Shoji, H. Takahashi, H. Nashi, T. Wakiyama, M. Doi, and M. Matsui: J. Appl. Phys., 76 (1994) 6642.   DOI
12 M. Takahashi and H. Shoji: J. Magn. Magn. Mat., 208 (2000) 145.   DOI
13 K. M. Kim and H. W. Kwon, J. G. Lee and J. H. Yu: J. Korean Mag. Soc., 27 (2017) 129.   DOI
14 Y. Jiang, J. Liu, P. K. Suri, G. Kennedy, N. N. Thadhani, D. J. Flannigan and J. P. Wang: Adv. Eng. Mater., 18 (2016) 1009.   DOI
15 Y. Jiang, V. Dabade, L. F. Allard, E. Lara-Curzio, R. James and J. P. Wang: Phys. Rev. Appl., 6 (2016) 024013.   DOI
16 Y. Jiang, M. A. Mehedi, E. Fu, Y. Wang, L. F. Allard and J. P. Wang: Sci. Rep., 6 (2016) 25436.   DOI
17 A. Iga: Jpn. J. Appl. Phys., 9 (1970) 415.   DOI
18 W. Coene, F. Hakkens, R. Coehoorn, D. B. De Mooij, C. De Waard, J. Fidler, and R. Grossinger: J. Magn. Magn. Mater., 96 (1991) 189.   DOI
19 J. A. Osborn: Phys. Rev., 67 (1945) 351.   DOI
20 M. Widenmeyer, T. C. Hansen and R. Niewa: Z. Anorg. Allg. Chem., 639 (2013) 2851.   DOI
21 D. J. Sellmyer, M. Zheng and R. Skomski: J. Phys.: Condens. Matter, 13 (2001) R433.   DOI
22 K. Jack: Proc. Roy. Soc. London, A208 (1951) 216.
23 M. Usikov and A. Khachaturyan: Fiz. Met. Metalloved., 30 (1970) 614.
24 T. Kim and M. Takahashi: Appl. Phys. Lett. 20 (1972) 492.   DOI
25 M. Komuro, Y. Kozono, M. Hanazono, and Y. Sugita: J. Appl. Phys., 67 (1990) 5126.   DOI
26 Y. Sugita, K. Mitsuoka, M. Komuro, H. Hoshiya, Y. Kozono, and M. Hanazono: J. Appl. Phys., 70 (1991) 5977.   DOI
27 J. M. D. Coey, K. O'Donnell, Q. Qi, E. Touchais and K. H. Jack: J. Phys.: Condens. Matter, 6 (1994) L23.   DOI
28 J. M. D. Coey: J. Appl. Phys., 76 (1994) 6632.   DOI
29 T. Weber, L. De Wit, F. W. Saris and P. Schaaf: Thin Solid Films, 279 (1996) 216.   DOI
30 T. Hattori, N. Kamiya and Y. Kato: J. Magn. Soc. Jpn., 25 (2001) 927.   DOI
31 Y. Sasaki, N. Usuki , K. Matsuo and M. Kishimoto: IEEE Trans. Magn., 41 (2005) 3241.   DOI
32 E. Kita, K. Shibata, H. Yanagihara, Y. Sasaki and M. Kishimoto: J. Magn. Magn. Mater., 310 (2007) 2411.   DOI
33 C. W. Kartikowati, A. Suhendi, R. Zulhijah, T. Ogi, T. Iwaki and K. Okuyama: Nanoscale, 8 (2016) 2648.   DOI
34 X. Zhao, C. Z. Wang, Y. Yao, and K. M. Ho: Phys. Rev. B, 94 (2016) 224424.   DOI
35 M. D. Kuzmin, K. P. Skokov, H. Jian, I. Radulov and O. Gutfleisch: J. Phys.: Condens. Matter, 26 (2014) 064205.   DOI
36 A. Edstrom M. Werwinski, D. Iusan, J. Rusz, O. Eriksson, K. P. Skokov, I. A. Radulov, S. Ener, M. D. Kuz'min, J. Hong, M. Fries, D. Y. Karpenkov, O. Gutfleisch, P. Toson, and J. Fidler: Phys. Rev. B, 92 (2015) 174413.   DOI
37 K. M. Kim, H. W. Kwon, J. G. Lee and J. H. Yu: IEEE Trans. Magn., 54 (2018) 2101805.
38 M. Tobise, S. Saito, and M. Doi: AIP Advances, 9 (2019) 035233.   DOI
39 D. L. Leslie-Pelecky and R. D. Rieke: Chem. Mater., 8 (1996) 1770.   DOI
40 T. Holstein and H. Primakoff: Phys. Rev., 58 (1940) 1098.   DOI
41 M. Pardavi-Horvath, J. Yan and J. R. Peverley: IEEE Trans. Magn., 37 (2001) 3881.   DOI
42 M. Kobayashi and Y. Ishikawa: IEEE Trans. Magn., 28 (1992) 1810.   DOI
43 T. Ogawa, Y. Ogata, R. Gallage, N. Kobayashi, N. Hayashi, Y. Kusano, S. Yamamoto, K. Kohara, M. Doi and M. Takano: Appl. Phys. Express, 6 (2013) 073007.   DOI
44 I. Dirba, C. A. Schwobel, L. V. B. Diop, M. Duerrschnabel, L. Molina-Luna, K. Hofmann, P. Komissinskiy, H.-J. Kleebe and O. Gutfleisch: Acta Materialia, 123 (2017) 214.   DOI
45 S. G. Kim, K. W. Jeon, J. G. Lee, H. Kong, H. J. Jeen, S. H. Kwon, and Y. K. Baek: J. Mag., 22(4) (2017) 590.   DOI
46 Y. Jiang, V. Dabade, L. F. Allard, E. L. Curzio, R. James and J. P. Wang: Phys. Rev. Appl., 6 (2016) 024013.   DOI
47 T. Ogi, A. B. D. Nandiyanto, Y. Kisakibaru, T. Iwaki, K. Nakamura and K. Okuyama: J. Appl. Phys., 113 (2013) 164301.   DOI
48 R. Zulhijah, K. Yoshimi, A. B. D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura and K. Okuyama: Adv. Powder. Technol., 25 (2014) 582.   DOI
49 R. Zulhijah, A. B. D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura and K. Okuyama: Nanoscale, 6 (2014) 6487.   DOI
50 R. Zulhijah, A. B. D. Nandiyanto, T. Ogi, T. Iwaki, K. Nakamura and K. Okuyama: J. Magn. Magn. Mater., 381 (2015) 89.   DOI
51 T. Ogi, Q. Li, S. Horie, A. Tameka, T. Iwaki and K. Okuyama: Adv. Powder. Technol., 27 (2016) 2520.   DOI
52 R. Zulhijah, A. Suhendi, K. Yoshimi, C. W. Kartikowati, T. Ogi, T. Iwaki and K.Okuyama: Langmuir, 31 (2015) 6011.   DOI
53 I. Dirba, C. A. Schwobel, L. V. B. Diop, M. Duerrschnabel, L. M. Luna, K. Hofmann, P. Komissinskiy, H. -J. Kleene and O. Gutfleisch: Acta Mater., 123 (2017) 214.   DOI
54 A. J. Newell and R. T. Merrill: J. Geophys. Res.: Solid Earth, 104 (1999) 617.   DOI