• Title/Summary/Keyword: Newton-type inequalities

Search Result 7, Processing Time 0.02 seconds

PERTURBED FRACTIONAL NEWTON-TYPE INEQUALITIES BY TWICE DIFFERENTIABLE FUNCTIONS

  • Fatih Hezenci;Hasan Kara;Huseyin Budak
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.285-299
    • /
    • 2023
  • In the present paper, we establish some perturbed Newton-type inequalities in the case of twice differentiable convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the aid of special cases of our main results, we also give some previously obtained Newton-type inequalities.

NOTE ON NEWTON-TYPE INEQUALITIES INVOLVING TEMPERED FRACTIONAL INTEGRALS

  • Fatih Hezenci;Huseyin Budak
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.349-364
    • /
    • 2024
  • We propose a new method of investigation of an integral equality associated with tempered fractional integrals. In addition to this, several Newton-type inequalities are considered for differentiable convex functions by taking the modulus of the newly established identity. Moreover, we establish some Newton-type inequalities with the help of Hölder and power-mean inequality. Furthermore, several new results are presented by using special choices of obtained inequalities.

SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS

  • Ali, Muhammad Aamir;Abbas, Mujahid;Sehar, Mubarra;Murtaza, Ghulam
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.193-209
    • /
    • 2021
  • In this research, we offer two new quantum integral equalities for recently defined qε2-integral and derivative, the derived equalities then used to prove quantum integral inequalities of Simpson's and Newton's type for preinvex functions. We also considered the special cases of established results and offer several new and existing results inside the literature of Simpson's and Newton's type inequalities.

FRACTIONAL TRAPEZOID AND NEWTON TYPE INEQUALITIES FOR DIFFERENTIABLE S-CONVEX FUNCTIONS

  • Fatih Hezenci;Huseyin Budak;Muhammad Aamir Ali
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.160-183
    • /
    • 2023
  • In the present paper, we prove that our main inequality reduces to some trapezoid and Newton type inequalities for differentiable s-convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the help of special cases of our main results, we also present some new and previously obtained trapezoid and Newton type inequalities.

NEW QUANTUM VARIANTS OF SIMPSON-NEWTON TYPE INEQUALITIES VIA (α, m)-CONVEXITY

  • Saad Ihsan Butt;Qurat Ul Ain;Huseyin Budak
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In this article, we will utilize (α, m)-convexity to create a new form of Simpson-Newton inequalities in quantum calculus by using q𝝔1-integral and q𝝔1-derivative. Newly discovered inequalities can be transformed into quantum Newton and quantum Simpson for generalized convexity. Additionally, this article demonstrates how some recently created inequalities are simply the extensions of some previously existing inequalities. The main findings are generalizations of numerous results that already exist in the literature, and some fundamental inequalities, such as Hölder's and Power mean, have been used to acquire new bounds.

MILNE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS

  • Djenaoui, Meriem;Meftah, Badreddine
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.325-338
    • /
    • 2022
  • In this paper, a new identity is given. On the basis of this identity, we establish some new estimates of Milne's quadrature rule, for functions whose first derivative is s-convex. We discuss the cases where the derivatives are bounded as well as Lipschitzian. Some illustrative applications are given.