PERTURBED FRACTIONAL NEWTON-TYPE INEQUALITIES BY TWICE DIFFERENTIABLE FUNCTIONS

Fatih Hezenci, Hasan Kara*, and Hüseyin Budak

Abstract

In the present paper, we establish some perturbed Newtontype inequalities in the case of twice differentiable convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the aid of special cases of our main results, we also give some previously obtained Newton-type inequalities.

1. Introduction

The inequality theory is a favoured subject in many mathematical areas with plenty of applications. Moreover, convex functions have a considerable status in the theory of inequality. Another significant result related to convex function is the Hermite-Hadamard inequality. Many researchers have established the Hermite-Hadamard inequality with great interest to generalize and extend it to the case of different classes of functions such as s-convex functions, quasi-convex functions, log-convex, etc. In recent years, Fractional calculus has grown attention because of its indicated applications in a wide range of seemingly different areas of science. Due to the significance of fractional calculus, researchers have considered distinct fractional integral inequalities. The bounds of new formulas by using the Hermite-Hadamard and Simpson's type inequalities.

Throughout the paper, we shall give fundamental fractional integral notations and different fractional integrals needed in the sequel. In the papers [9,15], mathematical preliminaries of fractional calculus theory will be presented as follows:

Definition 1.1. $[9,15]$. Let us define $\varpi \in L_{1}[\mu, \eta]$. The Riemann-Liouville integrals $\mathbb{J}_{\mu+}^{\alpha} \varpi$ and $\mathbb{J}_{\eta-}^{\alpha} \varpi$ of order $\alpha>0$ with $\mu \geq 0$ are described by

$$
\mathbb{J}_{\mu+}^{\alpha} \varpi(x)=\frac{1}{\Gamma(\alpha)} \int_{\mu}^{x}(x-\xi)^{\alpha-1} \varpi(\xi) d \xi, \quad x>\mu
$$

Received October 3, 2022. Accepted January 25, 2023.
2020 Mathematics Subject Classification. 26A33, 26D07, 26D10, 26D15.
Key words and phrases. Newton-type inequalities, fractional calculus, convex functions.
*Corresponding author
and

$$
\mathbb{J}_{\eta-}^{\alpha} \varpi(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{\eta}(\xi-x)^{\alpha-1} \varpi(\xi) d \xi, \quad x<\eta,
$$

respectively Here, $\Gamma(\alpha)$ is the Gamma function and its defined as

$$
\Gamma(\alpha)=\int_{0}^{\infty} e^{-v} v^{\alpha-1} d v
$$

Let us note that $\mathbb{J}_{\mu+}^{0} \varpi(x)=\mathbb{J}_{\eta_{-}}^{0} \varpi(x)=\varpi(x)$.
Sarikaya et al. proved some Hermite-Hadamard type inequalities for the first time using the Riemann-Liouville fractional integrals in the paper [22]. Sarikaya and Yildirim established some new Hermite-Hadamard type inequalities and midpoint type inequalities by using Riemann-Liouville fractional integrals in the case of differentiable convex functions in the paper [21]. Khan et al. [14] presented some new guesses of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals and conformable fractional integrals. Tunc [26] investigated some new variants of Hermite-Hadamard inequalities based on h-convex functions with the aid of the fractional integrals. Moreover, Sarikaya and Ertugral [23] presented a new class of fractional integrals, which is known as generalized fractional, and they used these integrals to establish the general version of Hermite-Hadamard type inequalities for convex functions. Budak et al. investigated several variants of Ostrowski's and Simpson's type for differentiable convex functions by generalized fractional integrals in the paper [5]. For a better understanding of refinements of fractional integral inequalities, we suggest interested readers see the papers $[2,3,19,14,25,26]$.

The authors [20] presented some of Simpson's type inequalities with the aid of the Riemann-Liouville fractional integrals and in the case of general convex functions. Moreover, it is investigated several fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex in the paper [10]. See references [6, 27, 18], and the references therein for further information concerned with Simpson type inequalities and several properties of Riemann-Liouville fractional integrals and various fractional integral operators.

In the paper [7], some new integral inequalities of Newton-type for functions whose first derivative in modulus of certain power are arithmeticallyharmonically convex are established. In the paper [11], some Newton-type inequalities via differentiable convex functions based on the well-known RiemannLiouville fractional integrals are proved and some inequalities of RiemannLiouville fractional Newton-type via mappings of bounded variation are obtained. In the paper [24], some Newton type inequalities are established by using Riemann-Liouville fractional integrals and the authors demonstrated some inequalities of Riemann-Liouville fractional Newton-type via mappings of bounded variation. In the paper [8], some new inequalities of Newtontype based on convexity are presented and some applications for special cases of real functions are also given. For more information about Newton-type of inequalities including convex differentiable functions, it can be referred to
$[12,13,16,17]$ and the references therein. This paper aims to establish some perturbed Newton-type inequalities in the case of twice differentiable convex functions. These inequalities are proved by using Riemann-Liouville fractional integrals. The general structure of the study consists of three chapters including an introduction. The remaining part of the paper proceeds as follows: In Section 2, we will prove integral equality. Moreover, some perturbed Newtontype inequalities will be proved in the case of differentiable convex functions with the aid of the Riemann-Liouville fractional integrals. Furthermore, we show that our main inequalities reduce to Newton-type inequalities proved in earlier published papers. In Section 3, some conclusions and further research directions are discussed at the end of the paper.

2. Main results of Perturbed Fractional Newton-type Inequalities

Lemma 2.1. Let us assume that $\varpi:[\mu, \eta] \rightarrow \mathbb{R}$ is an absolutely continuous function (μ, η) so that $\varpi^{\prime \prime} \in L_{1}([\mu, \eta])$ and $\alpha>0$. Then, the following equality holds:

$$
\begin{align*}
& \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right] \tag{1}\\
& +\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right] \\
& \quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \\
& =-\frac{(\eta-\mu)^{2}}{2}\left[\Upsilon_{1}+\Upsilon_{2}+\Upsilon_{3}\right]
\end{align*}
$$

Here,

$$
\left\{\begin{array}{l}
\Upsilon_{1}=\int_{0}^{\frac{1}{3}}\left(\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right) \varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu) d \xi \\
\Upsilon_{2}=\int_{\frac{1}{3}}^{\frac{2}{3}}\left(\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right) \varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu) d \xi \\
\Upsilon_{3}=\int_{\frac{2}{3}}^{1}\left(\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right) \varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu) d \xi
\end{array}\right.
$$

Proof. By using the fundamental rules of integration by parts, it follows
(2)

$$
\begin{aligned}
\Upsilon_{1}= & \int_{0}^{\frac{1}{3}}\left(\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right) \varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu) d \xi \\
= & \left.\frac{1}{\eta-\mu}\left(\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right) \varpi^{\prime}(\xi \eta+(1-\xi) \mu)\right|_{0} ^{\frac{1}{3}} \\
& -\frac{1}{\eta-\mu} \int_{0}^{\frac{1}{3}}\left(\xi^{\alpha}-(1-\xi)^{\alpha}+\frac{3}{4}\right) \varpi^{\prime}(\xi \eta+(1-\xi) \mu) d \xi \\
= & \frac{1}{\eta-\mu}\left[\left(\left(\frac{1}{3^{\alpha+1}}+\left(\frac{2}{3}\right)^{\alpha+1}\right) \frac{1}{(\alpha+1)}-\frac{1}{4}\right) \varpi^{\prime}\left(\frac{2 \mu+\eta}{3}\right)+\frac{\alpha-1}{2(\alpha+1)} \varpi^{\prime}(\mu)\right]
\end{aligned}
$$

$$
-\frac{1}{\eta-\mu}\left[\left.\frac{1}{\eta-\mu}\left(\xi^{\alpha}-(1-\xi)^{\alpha}+\frac{3}{4}\right) \varpi(\xi \eta+(1-\xi) \mu)\right|_{0} ^{\frac{1}{3}}\right.
$$

$$
\left.-\frac{\alpha}{\eta-\mu} \int_{0}^{\frac{1}{3}}\left[\xi^{\alpha-1}+(1-\xi)^{\alpha-1}\right] \varpi(\xi \eta+(1-\xi) \mu) d \xi\right]
$$

$$
=\frac{1}{\eta-\mu}\left[\left(\left(\frac{1}{3^{\alpha+1}}+\left(\frac{2}{3}\right)^{\alpha+1}\right) \frac{1}{(\alpha+1)}-\frac{1}{4}\right) \varpi^{\prime}\left(\frac{2 \mu+\eta}{3}\right)+\frac{\alpha-1}{2(\alpha+1)} \varpi^{\prime}(\mu)\right]
$$

$$
-\frac{1}{(\eta-\mu)^{2}}\left(\frac{1}{3^{\alpha}}-\left(\frac{2}{3}\right)^{\alpha}+\frac{3}{4}\right) \varpi\left(\frac{2 \mu+\eta}{3}\right)-\frac{1}{4(\eta-\mu)^{2}} \varpi(\mu)
$$

$$
+\frac{\alpha}{(\eta-\mu)^{2}} \int_{0}^{\frac{1}{3}}\left[\xi^{\alpha-1}+(1-\xi)^{\alpha-1}\right] \varpi(\xi \eta+(1-\xi) \mu) d \xi .
$$

Similarly, we obtain
(3)

$$
\begin{aligned}
\Upsilon_{2}= & \frac{1}{\eta-\mu}\left(\left(\frac{1}{3^{\alpha+1}}+\left(\frac{2}{3}\right)^{\alpha+1}\right) \frac{1}{(\alpha+1)}-\frac{1}{4}\right)\left(\varpi^{\prime}\left(\frac{\mu+2 \eta}{3}\right)-\varpi^{\prime}\left(\frac{2 \mu+\eta}{3}\right)\right) \\
& -\frac{1}{(\eta-\mu)^{2}}\left(\left(\frac{2}{3}\right)^{\alpha}-\frac{1}{3^{\alpha}}\right)\left[\varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi\left(\frac{2 \mu+\eta}{3}\right)\right] \\
& +\frac{\alpha}{(\eta-\mu)^{2}} \int_{\frac{1}{3}}^{\frac{2}{3}}\left[\xi^{\alpha-1}+(1-\xi)^{\alpha-1}\right] \varpi(\xi \eta+(1-\xi) \mu) d \xi
\end{aligned}
$$

and
(4)

$$
\begin{aligned}
\Upsilon_{3}= & \frac{1}{\eta-\mu}\left[\frac{1-\alpha}{2(\alpha+1)} \varpi^{\prime}(\eta)-\left(\left(\frac{1}{3^{\alpha+1}}+\left(\frac{2}{3}\right)^{\alpha+1}\right) \frac{1}{(\alpha+1)}-\frac{1}{4}\right) \varpi^{\prime}\left(\frac{\mu+2 \eta}{3}\right)\right] \\
& -\frac{1}{(\eta-\mu)^{2}}\left(\frac{\varpi(\eta)}{4}-\left(\left(\frac{2}{3}\right)^{\alpha}-\frac{1}{3^{\alpha}}-\frac{3}{4}\right) \varpi\left(\frac{\mu+2 \eta}{3}\right)\right) \\
& +\frac{\alpha}{(\eta-\mu)^{2}} \int_{\frac{2}{3}}^{1}\left[\xi^{\alpha-1}+(1-\xi)^{\alpha-1}\right] \varpi(\xi \eta+(1-\xi) \mu) d \xi .
\end{aligned}
$$

If we add the equalities from (2) to (4), then we obtain the following equality (5)

$$
\begin{aligned}
\Upsilon_{1}+\Upsilon_{2}+\Upsilon_{3}= & \frac{\alpha-1}{2(\eta-\mu)(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right] \\
& -\frac{1}{4(\eta-\mu)^{2}}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right] \\
& +\frac{\alpha}{(\eta-\mu)^{2}} \int_{0}^{1}\left[\xi^{\alpha-1}+(1-\xi)^{\alpha-1}\right] \varpi(\xi \eta+(1-\xi) \mu) d \xi
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\alpha-1}{2(\eta-\mu)(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right] \\
& -\frac{1}{4(\eta-\mu)^{2}}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right] \\
& +\frac{\Gamma(\alpha+1)}{(\eta-\mu)^{\alpha+2}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right]
\end{aligned}
$$

If we multiply the both sides of (5) by $-\frac{(\eta-\mu)^{2}}{2}$, then the equality (1) is obtained. Hence, the proof of Lemma 2.1 is completed.

Remark 2.2. If we choose $\alpha=1$ in Lemma 2.1, then Lemma 2.1 reduces to [8, Lemma 2.1].

Theorem 2.3. Let's assume that the conditions of Lemma 2.1 are valid. Suppose also that the function $\left|\varpi^{\prime \prime}\right|$ is convex on $[\mu, \eta]$. Then, it follows
(6)

$$
\left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right.
$$

$$
\left.-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\,
$$

$$
\leq \frac{(\eta-\mu)^{2}}{2}\left(\Omega_{1}(\alpha)+\Omega_{2}(\alpha)+\Omega_{3}(\alpha)\right)\left[\left|\varpi^{\prime \prime}(\mu)\right|+\left|\varpi^{\prime \prime}(\eta)\right|\right]
$$

where

$$
\left\{\begin{array}{l}
\Omega_{1}(\alpha)=\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right| \xi d \xi, \tag{7}\\
\Omega_{2}(\alpha)=\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right| \xi d \xi, \\
\Omega_{3}(\alpha)=\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right| \xi d \xi .
\end{array}\right.
$$

Proof. If we take modulus in Lemma 2.1, then we get

$$
\begin{equation*}
\left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
& \left.-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
\leq & \frac{(\eta-\mu)^{2}}{2}\left[\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right| d \xi\right. \\
& +\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right| d \xi \\
& \left.+\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right| d \xi\right]
\end{aligned}
$$

Since we know the fact that $\left|\varpi^{\prime \prime}\right|$ is convex, it follows

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.\quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|\left[\xi\left|\varpi^{\prime \prime}(\eta)\right|+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|\right] d \xi\right. \\
& \quad+\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|\left[\xi\left|\varpi^{\prime \prime}(\eta)\right|+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|\right] d \xi \\
& \left.\quad+\int_{\frac{2}{3}}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|\left[\xi\left|\varpi^{\prime \prime}(\eta)\right|+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|\right] d \xi\right] \\
& =\frac{(\eta-\mu)^{2}}{2}\left[\Omega_{1}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|+\Omega_{3}(\alpha)\left|\varpi^{\prime \prime}(\mu)\right|+\Omega_{2}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|+\Omega_{2}(\alpha)\left|\varpi^{\prime \prime}(\mu)\right|\right.
\end{aligned}
$$

$\left.+\Omega_{3}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|+\Omega_{1}(\alpha)\left|\varpi^{\prime \prime}(\mu)\right|\right]$.
This finishes the proof of Theorem 2.3.
Remark 2.4. Let us consider $\alpha=1$ in Theorem 2.3. Then, the following Newton-type inequality holds:

$$
\begin{array}{r}
\left|\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]-\frac{1}{\eta-\mu} \int_{\mu}^{\eta} \varpi(\xi) d \xi\right| \\
\leq \frac{(\eta-\mu)^{2}}{384}\left[\left|\varpi^{\prime \prime}(\mu)\right|+\left|\varpi^{\prime \prime}(\eta)\right|\right]
\end{array}
$$

which is established by [8, Theorem 2.1].
Theorem 2.5. Let's consider the conditions of Lemma 2.1. Let us also consider that the function $\left|\varpi^{\prime \prime}\right|^{q}, q>1$ is convex on $[\mu, \eta]$. Then, the following inequality holds:

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.\quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\varphi_{1}(\alpha, p)\left(\frac{5\left|\varpi^{\prime \prime}(\mu)\right|^{q}+\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{18}\right)^{\frac{1}{q}}+\varphi_{2}(\alpha, p)\left(\frac{\left|\varpi^{\prime \prime}(\mu)\right|^{q}+\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{6}\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\varphi_{3}(\alpha, p)\left(\frac{\left|\varpi^{\prime \prime}(\mu)\right|^{q}+5\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{18}\right)^{\frac{1}{q}}\right] .
\end{aligned}
$$

Here, $\frac{1}{p}+\frac{1}{q}=1$ and

$$
\left\{\begin{array}{l}
\varphi_{1}(\alpha, p)=\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|^{p} d \xi\right)^{\frac{1}{p}} \\
\varphi_{2}(\alpha, p)=\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}} \\
\varphi_{3}(\alpha, p)=\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}
\end{array}\right.
$$

Proof. Let us apply the Hölder inequality to inequality (8). Then, we derive

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{0}^{\frac{1}{3}}\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right|^{q} d \xi\right)^{\frac{1}{q}}\right. \\
& +\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right|^{q} d \xi\right)^{\frac{1}{q}} \\
& \left.+\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{\frac{2}{3}}^{1}\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right|^{q} d \xi\right)^{\frac{1}{q}}\right] .
\end{aligned}
$$

From the fact that $\left|\varpi^{\prime \prime}\right|^{q}$ is convex, we obtain

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.\quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|^{p} d \xi\right)^{\frac{1}{p}}\right. \\
& \times\left(\int_{0}^{\frac{1}{3}} \xi\left|\varpi^{\prime \prime}(\eta)\right|^{q}+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|^{q} d \xi\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{\frac{1}{3}}^{\frac{2}{3}} \xi\left|\varpi^{\prime \prime}(\eta)\right|^{q}+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|^{q} d \xi\right)^{\frac{1}{q}} \\
& \left.+\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{\frac{2}{3}}^{1} \xi\left|\varpi^{\prime \prime}(\eta)\right|^{q}+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|^{q} d \xi\right)^{\frac{1}{q}}\right] \\
& =\frac{(\eta-\mu)^{2}}{2}\left[\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\frac{5\left|\varpi^{\prime \prime}(\mu)\right|^{q}+\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{18}\right)^{\frac{1}{q}}\right. \\
& +\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\frac{\left|\varpi^{\prime \prime}(\mu)\right|^{q}+\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{6}\right)^{\frac{1}{q}} \\
& \\
& \left.+\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|^{p} d \xi\right)^{\frac{1}{p}}\left(\frac{\left|\varpi^{\prime \prime}(\mu)\right|^{q}+5\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{18}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

This is the end of the proof of Theorem 2.5.
Theorem 2.6. Assume that the assumptions of Lemma 2.1 hold. Assume also that the function $\left|\varpi^{\prime \prime}\right|^{q}, q \geq 1$ is convex on $[\mu, \eta]$. Then, the following inequality

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.\quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\left(\Omega_{4}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Omega_{1}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|^{q}+\left(\Omega_{4}(\alpha)-\Omega_{1}(\alpha)\right)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right)^{\frac{1}{q}}\right]\right. \\
& \quad+\left(\Omega_{5}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Omega_{2}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|^{q}+\left(\Omega_{5}(\alpha)-\Omega_{2}(\alpha)\right)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

$$
\left.+\left(\Omega_{6}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Omega_{3}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|^{q}+\left(\Omega_{6}(\alpha)-\Omega_{3}(\alpha)\right)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right)^{\frac{1}{q}}\right]\right]
$$

is valid. Here, $\Omega_{1}(\alpha), \Omega_{2}(\alpha)$, and $\Omega_{3}(\alpha)$ are defined in (7) and

$$
\left\{\begin{array}{l}
\Omega_{4}(\alpha)=\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right| d \xi \\
\Omega_{5}(\alpha)=\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right| d \xi \\
\Omega_{6}(\alpha)=\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right| d \xi
\end{array}\right.
$$

Proof. Let us apply the power-mean inequality to inequality (8), we get

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.\quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right| d \xi\right)^{1-\frac{1}{q}}\right. \\
& \quad \times\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right|^{q} d \xi\right)^{\frac{1}{q}} \\
& \quad+\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right| d \xi\right)^{1-\frac{1}{q}} \\
& \quad \times\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right|^{q} d \xi\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right| d \xi\right)^{1-\frac{1}{q}} \\
& \left.\times\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|\left|\varpi^{\prime \prime}(\xi \eta+(1-\xi) \mu)\right|^{q} d \xi\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

Since $\left|\varpi^{\prime \prime}\right|^{q}$ is convex, it follows

$$
\begin{aligned}
& \left\lvert\, \frac{(\eta-\mu)(1-\alpha)}{4(\alpha+1)}\left[\varpi^{\prime}(\mu)-\varpi^{\prime}(\eta)\right]+\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]\right. \\
& \left.\quad-\frac{\Gamma(\alpha+1)}{2(\eta-\mu)^{\alpha}}\left[\mathbb{J}_{\mu+}^{\alpha} \varpi(\eta)+\mathbb{J}_{\eta-}^{\alpha} \varpi(\mu)\right] \right\rvert\, \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left[\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right| d \xi\right)^{1-\frac{1}{q}}\right. \\
& \quad \times\left(\int_{0}^{\frac{1}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}+\frac{3 \xi}{4}-\frac{1}{2}\right|\left[\xi\left|\varpi^{\prime \prime}(\eta)\right|^{q}+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right] d \xi\right)^{\frac{1}{q}} \\
& \quad+\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right| d \xi\right)^{1-\frac{1}{q}} \\
& \quad \times\left(\int_{\frac{1}{3}}^{\frac{2}{3}}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{1}{4}\right|\left[\xi\left|\varpi^{\prime \prime}(\eta)\right|^{q}+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right] d \xi\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right| d \xi\right)^{1-\frac{1}{q}} \\
& \left.\times\left(\int_{\frac{2}{3}}^{1}\left|\frac{\xi^{\alpha+1}+(1-\xi)^{\alpha+1}}{\alpha+1}-\frac{3 \xi}{4}+\frac{1}{4}\right|\left[\xi\left|\varpi^{\prime \prime}(\eta)\right|^{q}+(1-\xi)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right] d \xi\right)^{\frac{1}{q}}\right] \\
& =\frac{(\eta-\mu)^{2}}{2}\left[\left(\Omega_{4}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Omega_{1}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|^{q}+\left(\Omega_{4}(\alpha)-\Omega_{1}(\alpha)\right)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right)^{\frac{1}{q}}\right]\right. \\
& +\left(\Omega_{5}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Omega_{2}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|^{q}+\left(\Omega_{5}(\alpha)-\Omega_{2}(\alpha)\right)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right)^{\frac{1}{q}}\right] \\
& \left.+\left(\Omega_{6}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Omega_{3}(\alpha)\left|\varpi^{\prime \prime}(\eta)\right|^{q}+\left(\Omega_{6}(\alpha)-\Omega_{3}(\alpha)\right)\left|\varpi^{\prime \prime}(\mu)\right|^{q}\right)^{\frac{1}{q}}\right]\right] .
\end{aligned}
$$

Thus, we obtain the desired result of Theorem 2.6.

Remark 2.7. Let us consider $\alpha=1$ in Theorem 2.6. Then, the following Newton-type inequality holds:

$$
\begin{aligned}
& \left|\frac{1}{8}\left[\varpi(\mu)+3 \varpi\left(\frac{2 \mu+\eta}{3}\right)+3 \varpi\left(\frac{\mu+2 \eta}{3}\right)+\varpi(\eta)\right]-\frac{1}{\eta-\mu} \int_{\mu}^{\eta} \varpi(\xi) d \xi\right| \\
& \leq \frac{(\eta-\mu)^{2}}{2}\left\{(\frac { 1 9 } { 3 ^ { 4 } \cdot 2 ^ { 6 } }) ^ { 1 - \frac { 1 } { q } } \left[\left(\frac{27\left|\varpi^{\prime \prime}(\eta)\right|^{q}+125\left|\varpi^{\prime \prime}(\mu)\right|^{q}}{3^{4} \cdot 2^{9}}\right)^{\frac{1}{q}}\right.\right. \\
& \left.\left.+\left(\frac{125\left|\varpi^{\prime \prime}(\eta)\right|^{q}+27\left|\varpi^{\prime \prime}(\mu)\right|^{q}}{3^{4} \cdot 2^{9}}\right)^{\frac{1}{q}}\right]\right\} \\
& \left.\quad+\frac{1}{3^{4} \cdot 2^{2}}\left[\left(\frac{\left|\varpi^{\prime \prime}(\mu)\right|^{q}+\left|\varpi^{\prime \prime}(\eta)\right|^{q}}{2}\right)^{\frac{1}{q}}\right]\right\}
\end{aligned}
$$

which is given by [8, Theorem 2.2].

3. Conclusion

Some perturbed Newton-type inequalities are investigated for twice differentiable convex functions by using Riemann-Liouville fractional integrals. By using the special cases of our results, we show that our results reduce inequalities obtained in earlier work. In future works, mathematicians can try to generalize and refine our results by utilizing a different version of convex function classes or another type of fractional integral operator.

References

[1] M. W. Alomari, A companion of Dragomir's generalization of Ostrowski's inequality and applications in numerical integration, Ukranianian Math. J. 64 (2012), 435-450.
[2] P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Methods Appl. Sci. 40 (2017), no. 11, 3882-3891.
[3] P. Agarwal, M. Jleli, and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl. 2017 (2017), no. 1, 1-10.
[4] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, and K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving Riemann-Liouville fractional integrals and applications, Math. Probl. Eng. 2020 (2020), 3051920.
[5] H. Budak, F. Hezenci, and H. Kara, On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Methods Appl. Sci., 44 (2021), no. 17, 12522-12536.
[6] H. Budak, F. Hezenci, and H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Difference Equ. 2021 (2021), no.1, 1-32.
[7] S. Erden, S. Iftikhar, P. Kumam, and M. U. Awan, Some Newton like inequalities with applications,RACSAM Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. 114 (2020), no. 4, 1-13.
[8] S. Gao and W. Shi, On new inequalities of Newton-type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math. 74 (2012), no. 1, 33-41.
[9] R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997.
[10] F. Hezenci, H. Budak, and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (2021), no. 1, 1-10.
[11] F. Hezenci, H. Budak, and P. Kosem, On New version of Newton's inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., in press.
[12] S. Iftikhar, P. Kumam, and S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals 2020 (2020), no. 3, 2050037.
[13] S. Iftikhar, S.Erden, P. Kumam, and M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Difference Equ. 2020 (2020), no. $1,1-14$.
[14] M. A. Khan, A. Iqbal, M. Suleman and Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl. 2018 (2018), 1-15.
[15] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
[16] M. A. Noor, K. I. Noor, and S. Iftikhar, Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud. 9 (2016), no. 1, 7-16.
[17] M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Math. J. 40 (2018), no. 2, 239-250.
[18] J. Park, On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci. 9 (2015), no. 62, 3057-3069.
[19] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[20] C. Peng, C. Zhou, and T. S. Du, Riemann-Liouville fractional Simpson's inequalities through generalized (m, h_{1}, h_{2})-preinvexity, Ital. J. Pure Appl. Math. 38 (2017), 345367.
[21] M. Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for RiemannLiouville fractional integrals, Miskolc Math. Notes 17 (2016), 1049-1059.
[22] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), 2403-2407.
[23] M. Z. Sarikaya and F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova Math. 47 (2020), 193-213.
[24] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract. 6 (2022) no. 3, 175.
[25] J. Tariboon, S. K. Ntouyas, and P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Difference Equ. 2015 (2015), no. 1, 1-19.
[26] M. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27 (2013), no. 4, 559-565.
[27] X. You, F. Hezenci, H. Budak, and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Mathematics 7 (2021), no. 3, 3959-3971.

Fatih Hezenci
Department of Mathematics, Faculty of Science and Arts, Duzce University, Turkey.
E-mail: fatihezenci@gmail.com

Hasan Kara
Department of Mathematics, Faculty of Science and Arts,
Duzce University, Turkey.
E-mail: hasan64kara@gmail.com
Hüseyin Budak
Department of Mathematics, Faculty of Science and Arts,
Duzce University, Turkey.
E-mail: hsyn.budak@gmail.com

